

SWIG Reference Manual

Version 1.1
June, 1997

David M. Beazley
Department of Computer Science
University of Utah
Salt Lake City, Utah 84112
beazley@cs.utah.edu

Copyright (C) 1996,1997
All Rights Reserved

SWIG Users Guide 2

Version 1.1, June 24, 1997

SWIG Reference Manual

Copyright (C) 1996, 1997
David M. Beazley
All Rights Reserved

You may distribute this document in whole provided this copyright notice is retained. Unautho-
rized duplication of this document in whole or part is prohibited without the express written
consent of the author.

SWIG 1.1 is Copyright (C) 1995-1997 by the University of Utah and the Regents of the Universiy
of California and is released under the following license :

This software is copyrighted by the University of Utah and the Regents of the University of Cali-
fornia. The following terms apply to all files associated with the software unless explicitly dis-
claimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software
and its documentation for any purpose, provided that (1) existing copyright notices are retained
in all copies and that this notice is included verbatim in any distributions and (2) redistributions
including binaries reproduce these notices in the supporting documentation. No written agree-
ment, license, or royalty fee is required for any of the authorized uses. Substantial modifications
to this software may be copyrighted by their authors and need not follow the licensing terms
described here, provided that the new terms are clearly indicated on the first page of each file
where they apply.

IN NO EVENT SHALL THE AUTHOR, THE UNIVERSITY OF CALIFORNIA, THE UNIVER-
SITY OF UTAH, OR THE DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDI-
RECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS OR ANY OF THE ABOVE PARTIES HAVE BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

THE AUTHORS, THE UNIVERSITY OF CALIFORNIA, THE UNIVERSITY OF UTAH, AND
DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN
"AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PRO-
VIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

SWIG Users Guide 3

Command Line Options

General Options
-c Do not include the SWIG runtime functions. This includes

the pointer type-checker and support code. Used when
working with multiple SWIG generated module.

-c++ Enable C++ processing. Required for SWIG to understand
C++ keywords and apply C++ specific processing.

-ci Check a file into the SWIG library. The file is placed into the
directory as used by the target scripting language. Must
have write permission on the SWIG library.

-co Check a file out of the SWIG library and place it in the
current directory. Does nothing if the file already exists.

-debug SWIG debugging module. Doesn’t do much of anything
interesting.

-Dsymbol Defines a symbol (for conditional compilation). Roughly
equivalent to the C compiler version.

-d docfile Write documentation to docfile. The filename will have the
appropriate suffix appended to it (.html, .doc, .tex, etc...).

-dascii Produce ASCII documentation.

-dhtml Produce HTML documentation.

-dlatex Produce LaTeX documentation.

-dnone Produce no documentation.

-guile Make wrappers for FSF Guile 1.0.

-help Display all available command line options.

-Idir Specify a new directory to search for SWIG library files
or any files included with the SWIG %include directive.

-lfile Specifies additional files to wrap as part of this module.
Files specified with -l are simply appended to the input
file and wrapped as part of the same module.

-make_default Make default constructors and destructors for all classes
and structures without them. Works for both C and C++.

-module name Change the module name. Overrides %module.
Version 1.1, June 24, 1997

SWIG Users Guide 4

-nocomment Ignore all comments (when producing documentation)

-o file Change the name of the output file.

-objc Enable Objective-C processing

-perl4 Perl4 module.

-perl5 Perl5 module.

-python Python module.

-stat Produce statistics. Somewhat inaccurate at the moment, but
this option also produces other diagnostic information.

-strict n Change strictness of pointer type-checking. 0 = no
checking, 1 = warnings only, 2 = strict (the default)

-swiglib Prints location of SWIG library and exits.

-t typemap_file Use a typemap file. At most only one typemap can be
specified.This file is read before any other files.

-tcl Tcl module. Compatible with Tcl 7.x and Tcl 8.x.

-tcl8 Tcl 8.0 module. Uses the new Tcl 8.0 object interface.

-v (Very) Verbose mode. Prints out everything SWIG is doing,
where it’s looking for files, etc... Useful for tracking down
SWIG installation problems or compilation problems.

-version Display SWIG’s version number.

Comment handling
-Safter Assume comments appear after each declaration.

-Sbefore Assume comments appear before each declaration.

-Schop_bottom n Number of lines to chop off the bottom of comment blocks.

-Schop_left n Number of characters to chop off the left of comments

-Schop_right n Number of characters to chop off the right of comments.

-Schop_top n Number of lines to chop off top of comment blocks.

-Signore Ignore comments.

-Sskip n Set maximum number of lines between comments and
declarations (default = 1).
Version 1.1, June 24, 1997

SWIG Users Guide 5

-Stabify Leave tabs intact.

-Suntabify Expand comment tabs into spaces (default).

Documentation Processing
-Sformat Allow SWIG to reformat documentation text (default).

-Sinfo Print C calling information for each declaration (default)

-Snoinfo Omit C calling information.

-Snosort Do not sort the documentation (default).

-Spre Assume text is preformatted.

-Ssort Sort the documentation.

Tcl Options (available with -tcl or -tcl8)
-prefix name Set a prefix to be appended to all names.

-htcl tcl.h Specify the name of the "tcl.h" header file. Using this is
likely to produce modules that are incompatible with other
versions of Tcl however.

-htk tk.h Specify the name of the "tk.h" header file.

-namespace Build module into a [incr Tcl] namespace. The name of the
namespace is the same as specified with %module or can be
set using the -prefix option.

-plugin Produce code compatible with Tcl Netscape Plugin

-noobject Omit code for object oriented interface. Results in smaller
files.

-old Use old SWIG interface (same as -noobject).

Perl5 Options (available with -perl5)
-exportall Export all symbols (not generally recommended)

-package name Set package name (if different than the module).

-static Omit code related to dynamic loading.

-shadow Create shadow classes.

Python Options (available with -python)
-globals name Set name used to access C global variables

('cvar' by default).
Version 1.1, June 24, 1997

SWIG Users Guide 6
-shadow Generate shadow classes.

-docstring Create doc strings (only works with -shadow).

Perl4 Options (available with -perl4)
-prefix name Set a prefix to be appended to all names
Version 1.1, June 24, 1997

SWIG Users Guide 7
SWIG Directives
%{ ... %}

Code insertion block. Everything enclosed in %{, %} is copied verbatim into the result-
ing wrapper code. Primarily used to include header files and helper functions. For exam-
ple :

%{
#include <GL/gl.h>
#include <GL/glx.h>
%}

Most SWIG input files contain at least one of these declarations. Any number of code
insertion blocks may appear in an interface file.

%addmethods [classname] { ... }

Adds additional “methods” to C++ classes, C structures, and Objective-C interfaces. This
can be used to provide “additional” functionality to objects when building a scripting
language interface. It can also be used to make C programs appear object oriented. The
directive can be used in a number of ways :

struct Vector {
double x,y,z;
%addmethods {

Vector() { return (Vector *) malloc(sizeof(Vector)); }
~Vector() { free(self); }
void output() {

printf(“[%g, %g, %g]\n”, self->x, self->y, self->z);
}

}
};

When this is wrapped by SWIG, Vector will not only be a C struct, but will have mem-
ber functions added to it. For example (in Python) :

>>> v = Vector()
>>> v.x = 3
>>> v.y = 20
>>> v.z = -5
>>> v.output()
[3, 20, -5]
>>> del v

%addmethods may also be detached from the original class definition as in :

class List { // Original C++ class
public:

...
};

// Now add methods to the class
%addmethods List {

void output(FILE *f);
Version 1.1, June 24, 1997

SWIG Users Guide 8
int size();
}

If the code for the added methods is not supplied, the methods are expanded into func-
tion calls of the format Classname_method(Class *obj, ...). For the List class
above, you would need to implement the following functions :

void List_output(List *l, FILE *f) {
// Added method List::output

}

int List_size(List *l) {
// Added method List::size
return result;

}

Added methods are not part of the real C++ definition--nor does SWIG modify the origi-
nal C++ class or C structure in any way. However, added methods can be inherited and
used in derived classes (when used within SWIG).

%apply datatype { typelist };

Changes the processing of a datatype by applying a typemap rule to it. This can be used
to make arguments act as output values, input values, etc... For example :

%include typemaps.i

%apply double *INPUT { double *in1, double *in2};
%apply double *OUPUT { double *out, double *result, Real *ans };

void add(double *in1, double *in2, double *result);

%include constraints.i
%apply Number POSITIVE { double x };

double log(double x);

This directive is primarily used in conjunction with SWIG library files (such as
typemaps.i or constraints.i). The effects of the %apply directive remain in effect
until subsequent calls to %apply or the %clear directive is issued.

%checkout filename

Extracts a file from the SWIG library and puts it in the current directory. Will not over-
write an existing file if it exists. This function is primarily designed to support the SWIG
library. If a particular library file requires the use of a particular Tcl/Python/Perl script,
the script can be placed in the library and checked out into the user’s working directory
whenever the library file is used. For example :

%checkout array.tcl // Copy ‘array.tcl’ into current directory
%checkout “database.pl” // Copy ‘database.pl’ into current directory
Version 1.1, June 24, 1997

SWIG Users Guide 9
%clear datatype [, typelist];

The opposite of %apply. Clears any special processing that has been applied to a
datatype. For example :

%clear double *in;
%clear double *output, double *result, Real *ans;

This only undos the effect of the %apply directive. It does not change any special pro-
cessing that might have been added explicitly using the %typemap directive.

%disabledoc

Disables all documentation generation until explicitly re-enabled using the %enabledoc
directive. Can be safely nested (i.e. use of %disabledoc/%enabledoc when documen-
tation is already disabled has no effect).

%echo “message”

Prints a message to the console when compiled. Modules can use this to print diagnostic
or informative message to the screen when SWIG is run. For example :

%echo “Expect a warning here.”
double foo(double a[4]);

One can also use the following form if printing alot of text

%echo %{
... a block of text ...
%}

%elif expr

Conditional compilation. Is the same as #elif expr. Currently the implementation
only allows a single type of expression as shown :

#elif defined(FOO)
...

#elif !defined(FOO)
...

For practical purposes, the #elif version should be used in most interfaces. The %elif
form is sometimes used by preprocessing tools (since %elif passes through the C pre-
processor without modification).

%else
Conditional compilation. Is the same as #else. The %else form is only used by some
special preprocessing tools (since it passes through the C preprocessor unchanged).
Version 1.1, June 24, 1997

SWIG Users Guide 10
%enabledoc

Enables the documentation system after being disabled by %disabledoc.

%endif

Conditional compilation. Same as #endif.

%except(lang) { ... }

Creates a user-definable exception handler. For example :

%except(perl5) {
try {

$function
} catch (RangeError) {

croak(“RangeError”);
} catch (OutofMemory) {

croak(“Out of memory”);
} catch(...) {

croak(“Unknown exception thrown”);
}

}

The language specifier indicates which language the handler is for. If it doesn’t match the
target language, the exception handler is simply ignored. The code specified gets
included into all SWIG generated wrapper functions. The $function variable gets
replaced by the real C/C++ function call when code is generated.

Exception handlers can be redefined as needed by simply specifying a new exception
handler. To clear an exception, use %except with no code. For example :

%except(perl5); // Clears any exception handlers

A shorthand version of %except is available for language-independent processing as
follows :

%include exception.i

%except {
try {

$function
} catch (RangeError) {

SWIG_exception(SWIG_ValueError, “Range Error”);
} catch (OutofMemory) {

SWIG_exception(SWIG_MemoryError,”Out of memory”);
} catch(...) {

SWIG_exception(SWIG_RuntimeError,”Unknown exception”);
}

}

When used in this manner, the exception handler will be applied to all target languages.
Version 1.1, June 24, 1997

SWIG Users Guide 11
%extern filename

Includes a file, but only extracts type-definitions. This includes typedefs, class, and struc-
ture definitions. None of the C declarations in the file are converted into wrapper code.
Use this if your interface relies on a common set of definitions. Examples :

%extern common.i
%extern “types.h”

%if expr

Conditional compilation. Is identical to the #if directive. Does not currently allow arbi-
trary expressions, but does support the C defined() macro. Use #if for most applica-
tions. %if is usually only used by special preprocessing tools. Examples :

#if defined(FOO)
#if !defined(FOO)

%ifdef symbol

Conditional compilation. Is the same as #ifdef. Checks to see if a particular symbol has
been defined within the SWIG parser. The %ifdef form is usually only used by special
preprocessing tools, but is functionally identical.

#ifdef SWIG
...
#endif

%ifdef SWIG
...
%endif

%ifndef symbol

Conditional compilation. Is the same as #ifndef.

%import filename

Imports all of the type information and definitions from another SWIG module. Is func-
tionally the same as %extern, but tells SWIG that all of the definitions are located in a
separately compiled module. Does not generate wrappers for any of the declarations in
the imported file. Examples :

%import graphics.i
%import “network.i”

%include filename

Copies a separate file into the current interface file and parses it. All definitions and dec-
larations are processed exactly as if they had been inlined into the current file. %include
is primarily used for building interfaces to various components, including library files,
Version 1.1, June 24, 1997

SWIG Users Guide 12
and creating packages. For example :

%module opengl

%include gl.i
%include glu.i
%include “glx.i”
%include “glaux.i”

Include can also be used to process header and C source files :

%include “gd.h”
%include “methods.c”

To locate files, %include manages a search-path of directories. Additional directories
can be added by running SWIG with the -Idir option.

%init %{ ... %}

All SWIG generated modules contain an initialization function to bind all of the wrapper
functions to the target scripting language. The %init directive inserts code into this ini-
tialization function. For example :

%init %{
printf(“Initializing my module...\n”);
module_initialize();

%}

This would call a C function module_initialize() whenever the resulting module
was loaded. %init is typically used to perform custom initializations and special pro-
cessing at module startup.

%inline %{ ... %}

Includes and wraps all of the declarations inside the %{, %} block. Primarily used to cre-
ate special helper functions in your scripting language. For example,

%inline %{
double *double_array(int size) {

return (double *) malloc(size*sizeof(double));
}

%}

Creates both a new function called double_array() and a scripting language wrapper.
The %inline directive is really short-hand for the following equivalent code :

%{
double *double_array(int size) {

return (double *) malloc(size*sizeof(double));
}
%}

double *double_array(int size);
Version 1.1, June 24, 1997

SWIG Users Guide 13
It is illegal for any SWIG directives to appear inside the code given to %inline.

%localstyle stylelist

Changes the documentation style for the current section. stylelist is a comma sepa-
rated list of style parameters. For example :

%localstyle sort, pre, skip=2

The directive is often unnecessary because the style parameters can be specified at the
start of each section. See the %section, %subsection, %subsubsection directives
for details. A full list of style parameters is described in the “Documentation system” sec-
tion of this manual.

%module name [, modlist]

Sets the name of the module. This directive should appear at the beginning of an interface
file and before any C declarations. Subsequent occurences of %module will be ignored.
The directive will also be ignored if it appears after any C declarations (the module name
will default to “swig” in this case). The modlist parameter is used to specify the initializa-
tion of other modules and is only used when building statically linked executables.
Examples :

%module example
... C declarations ...

// Create a module ‘package’ and initialize the other modules listed.
%module package, graphics, network, visual, fileio
... C declarations ...

%native(name) function

Add a natively written wrapper function to the module. For example, if you’ve already
written extension functions for Tcl, Python, Perl, etc... they can be added as follows :

%native(foo) wrap_foo;
%native(bar) int wrap_bar(Tcl_Interp *, ClientData, int argc, char *argv[]);
%native(spam) PyObject *pyspam(PyObject *self, PyObject *other);

SWIG doesn’t actually look at the function parameters when adding a native method.
The only processing performed is the creation of a “command” to call your native
method. The name of the command is always specified in paranthesis when using the
%native directive.

%name(newname) decl

Tells SWIG to rename a declaration when creating a scripting language command. For
example ,

%name(output) void print(Matrix *m);
Version 1.1, June 24, 1997

SWIG Users Guide 14
binds the print() function to a scripting language command “output”. %name can also
be applied to C++ class members and classes. For example :

class Foo {
public:

Foo();
~Foo();
// Rename a member function
%name(spam) double foo(int a);

};

// Renames class “Foo” to class “Bar”
%name(Bar) class Foo {
public:

...
};

%new decl

Gives a hint to the language modules that a function is returning newly allocated mem-
ory.. For example :

/* A “leaky” C function */
char *spam() {

char *c = (char *) malloc(200);
sprintf(c,”Hello world”);
return c;

}

// SWIG interface file
%new char *spam();

When implemented properly, language modules will return the result to the scripting
language, and properly cleanup or manage the returned memory. However, it should be
cautioned that not all language modules handle %new in the same manner or for all
datatypes. You can provide your own handler by specifying a typemap however.

%pragma(lang) var [= value];

Passes a language specific hint directly to the SWIG language modules. lang specifies
the language. For example :

%pragma(python) code=”from spam import *”;
%pragma(perl5) include=”support.pl”;
%pragma(tcl) volatile;

The precise meaning of pragma directives is highly language specific.

%readonly

Enables read-only mode. All variables and class members will be read-only until the
directive is explicitly disabled using %readwrite. Examples :

// Create some read-only variables
Version 1.1, June 24, 1997

SWIG Users Guide 15
%readonly
int Status;
char *error_msg;
%readwrite

// Create some read-only class member
class List {
public:

%readonly
int length;
%readwrite
List();
~List();
void insert(char *);
void remove(char *);
char *get(int i);

};

%readwrite

Disables read-only mode.

%rename oldname newname;

Applies a global renaming operation in which all future occurences of oldname will be
replaced by newname. This renaming applies to the names of C functions, variables,
classes, structures, member functions, and member data. %rename is a stronger, but func-
tionality equivalent version of the %name() directive (it does the same thing but is
applied to multiple occurrences of the same name). To disable %rename, simply give a
second declaration of %rename to change the name back to the original version.

%section “name” [, stylelist]

Documentation system. Starts a new section with given name. An optional list of style
parameters can be given at the end. For example :

%section “Graphics”
%section “Network”,sort,pre

Style parameters only apply to this particular section and will be active until the next sec-
tion is specified.

%subsection “name” [, stylelist]

Documentation system. Creates a new subsection with an optional list of style parame-
ters. For example :

%subsection “2D Graphics”
%subsection “Sockets”, sort, skip=1

It is illegal to create a %subsection without first creating a section. Subsections inherit
all of the style parameters from their parent section.
Version 1.1, June 24, 1997

SWIG Users Guide 16
%subsubsection “name” [, stylelist]

Documentation system. Creates a new subsubsection. Same rules as for %subsection.

%style stylelist

Documentation system. Set documentation styles globally for an entire interface file. For
example :

%style sort, format
%style pre, html_title=”<H1>:</H1>”, html_section=”<HR><H2>:</H2>”, noinfo

Multiple occurrences of this directive may cause unpredictable behavior.

%text %{ ... %}

Documentation system. Creates a block of descriptive text for inclusion in documenta-
tion. For example :

%section “Graphics”

%text %{
The following functions can be used for 2D and 3D graphics.
%}

// Now put declarations

The %text directive can be used to add documentation that is not associated with any
particular declaration.

%title “name” [, stylelist]

Documentation system. Sets the title of the documentation. When used, this should be
the first directive in an interface file. For example :

%title “OpenGL module”
%module opengl

// Declarations ...

Repeated occurrences of the %title directive are ignored. If no title is specified, SWIG
picks one based upon the module name.

%typedef datatype name;

A special version of the C typedef directive. SWIG understands both the normal type-
def and %typedef. However, %typedef results in a new typedef being created (by
SWIG) in the wrapper code. This is primarily used to work around some type-handling
problems and renaming of datatypes in interface files. For example :
Version 1.1, June 24, 1997

SWIG Users Guide 17
typedef double Real; // Normal typedef. SWIG does nothing.
%typedef double Real; // SWIG creates a ‘typedef double Real’ statement

// in the wrapper code.
%typedef int (*IFUNC)(int a, int b);

The %typedef directive is really just shorthand for the following SWIG code :

%{
typedef double Real; // Include a typedef in the C code
%}

typedef double Real; // Tell SWIG about it

Or

%inline %{
typedef double Real;
%}

%typemap(lang,method) datatype [, datatype list] { ... }

Creates a new typemap. Typemaps are used to modify SWIG’s code generator by specify-
ing special processing rules to certain C datatypes. Here are a few simple examples :

%typemap(tcl,in) int {
$target = atoi($source);

}

%typemap(tcl,in) double input {
$target = atof($source);

}

The lang parameter specifies the target language (tcl, perl5, python, perl4, guile). The
method parameter determines the particular conversion (all of which have names). In
this case “in” refers to the handling of input parameters. The datatype specifies which
types the typemap will be applied to. The typemap will also be applied to any additional
datatypes are given as a comma separated list. The matching process is name-based so in
the above example, the first typemap will be applied to all integers, while the second
typemap will only be applied to function parameters matching “double input”.

The conversion code is inlined into the resulting wrapper code. The $source and $tar-
get variables are replaced with the real C variables containing the input and output of
the type conversion.

A typemap may be applied to a list of datatype as follows :

%typemap(tcl,in) int, short, long {
$target = ($type) atol($source);

}

In this case, the $type variable gets filled in with the real datatype being used.

Typemaps may declare persistent variables as follows :
Version 1.1, June 24, 1997

SWIG Users Guide 18
%typemap(tcl,in) double *input(double temp) {
temp = atof($source);
$target = &temp;

}

Local temporaries may also be declared inside the code block, but these variables only
exist inside the typemap code (and are destroyed upon completion).

A typemap may be deleted by specifying it with no conversion code. For example :

// Delete some typemaps
%typemap(tcl,in) double;
%typemap(tcl,in) int, short, long;

Typemaps are primarily designed for advanced users who want to customize SWIG.
Please see the typemaps section of this manual for more details.

%wrapper %{ ... %}

Inserts code into the wrapper portion of the output file. This is almost never required, but
is used by a few library files. Examples :

%wrapper %{
/* Your C code here */

%}
Version 1.1, June 24, 1997

SWIG Users Guide 19
Documentation style options
The following options are available when specifying documentation styles with the %title,
%section, %subsection, %subsubsection, %localstyle, and %style directives.

Comment processing
after Assume comments appear after a declaration.
before Assume comments appear before a declaration
chop_top=nlines Number of lines to strip from top of a comment block
chop_bottom=nlines Number of lines to strip from bottom of a comment block
chop_left=nlines Number of characters to strip from left of comment block
chop_right=nlines Number of characters to strip from right of comment block
format Allow SWIG to reformat text
ignore Ignore comments
info Print C information text
keep Keep comments
noinfo Don’t print C information text
nosort Don’t sort documentation.
pre Assume comments are preformatted.
skip=nlines Number of blank lines between declarations and comments.
sort Sort documentation.
tabify Leave tabs intact.
untabify Convert tabs into spaces.

ASCII Documentation
ascii_indent=8 Default indentation of function descriptions.
ascii_columns=70 Maximum width of output when reformatting.

HTML Documentation
html_title=”<H1>:</H1>”
html_contents=”<H1>:</H1>”
html_section=”<HR><H2>:<H2>”
html_subsection=”<H3>:</H3>”
html_subsubsection=”<H4>:</H4>”
html_usage=”<TT>:</TT>”
html_descrip=”<BLOCKQUOTE>:</BLOCKQUOTE>”
html_text=”<P>”
html_cinfo=””
html_preformat=”<PRE>:</PRE>”
html_body=”<BODY bg_color=\”#ffffff\”>:</BODY>”

LaTeX Documentation
latex_parindent = “0.0in”
latex_textwidth = “6.5in”
latex_documentstyle = “[11pt]{article}”
latex_oddsidemargin = “0.0in”
latex_pagestyle = “\\pagestyle{headings}”
latex_title = “{\\Large \\bf :} \\\\\n”
latex_preformat = “{\\small \\begin{verbatim}:\\end{verbatim}}”
Version 1.1, June 24, 1997

SWIG Users Guide 20
latex_usage = “{\\tt \\bf : }”
latex_descrip = “{\\\\\n \\makebox[0.5in]{} \begin{minipage}[t]{6in} : \n
\\end{minipage} \\\\”;
latex_text = “:\\\\”
latex_cinfo = “{\\tt : }”
latex_section = “\\section{:}”
latex_subsection = “\\subsection{:}”
latex_subsubsection = “\\subsubsection{:}”
Version 1.1, June 24, 1997

SWIG Users Guide 21
Typemap Methods
The following typemap methods are available for modifying SWIG’s output. The ‘$’ variables
listed for each typemap represent variables that are supplied by SWIG during code generation.

%typemap(lang,arginit)

Is used to assign function arguments to some default value. This may be useful in writing
other type-handling functions that need to know if arguments were initialized or parsed
correctly.

$source Function argument (C representation)
$type C datatype
$mangle String representation of datatype
$basetype Base C datatype

%typemap(lang,argout)

Returns values through function arguments.

$source Function argument (C representation)
$target The result object that will be returned.
$type C datatype
$mangle String representation of datatype
$basetype Base C datatype
$arg Original function argument (Scripting representation)
$argnum Argument number
$name Function name

%typemap(lang,check)

Checks validity of function arguments in their C representation.

$source Scripting language representation (typically unused)
$target Function argument (C representation)
$type C datatype
$mangle String representation of datatype
$basetype Base C datatype
$arg Original function argument
$argnum Argument number
$name Function name

%typemap(lang, const)

Code to create constant values (Tcl module only). Code is inserted into the module initial-
ization function.

$source Value of the constant
$target Name of the constant
$value Value of constant
Version 1.1, June 24, 1997

SWIG Users Guide 22
%typemap(lang, default)

Supplies a default argument to certain function parameters.

$target C variable corresponding to the function argument
$type C datatype
$basetype Base C datatype
$name Function name

%typemap(lang, except)

Defines an exception handler. The typemap is applied to the return type and name of a
function.

$function Actual C function call
$source Return result of the C function.
$name Name of the function
$type Return type of the function
$basetype Base C datatype of function.

%typemap(lang,freearg)

Cleans up the function arguments. This code is executed after a function call to release
any resources that might have been used in allocating function arguments.

$source Function argument (C representation)
$target Original funtion argument (Scripting representation)
$type C datatype
$mangle String representation of datatype.
$basetype Base C datatype
$arg Original function argument (Scripting representation)
$argnum Argument number
$name Function name

%typemap(lang, ignore)

Tells SWIG how to ignore an argument. This effectively creates a “hidden” argument.
Since all arguments are needed to make the real C function call, this typemap is used to
assign a default value to the argument.

$target C variable corresponding to the function argument
$type C datatype
$basetype Base C datatype
$name Function name

%typemap(lang,in)

Converts function arguments from a scripting language representation to a C representa-
tion.

$source Scripting language object
$target C variable to hold result
$type C datatype
$mangle String representation of C datatype
Version 1.1, June 24, 1997

SWIG Users Guide 23
$basetype Base C datatype (without any pointers).
$name Function name
$argnum Argument number

%typemap(lang,memberin)

Sets the value of structure and class members. Is implemented in a language independent
manner so this typemap should not contain any scripting language specific code.

$source C variable containing the input value
$target Structure or class member
$type C datatype
$basetype Base C datatype
$name Member name

%typemap(lang, memberout)

Retrieves the value of a structure or class member. Is implemented in a language inde-
pendent manner so this typemap should not contain any scripting language specific
code.

$source Structure or class member
$target C datatype to return result in
$type C datatype
$basetype Base C datatype
$name Member name

%typemap(lang, newfree)

Provides code to handle function return values that have been specified with the SWIG
%new directive.

$source C variable containing the result
$type C datatype
$basetype Base C datatype
$name Name of the C function

%typemap(lang,out)

Converts the result of a C function to a scripting language object.

$source Result of C function
$target Scripting language object
$type C datatype
$mangle String representation of datatype.
$basetype Base C datatype
$name Function name

%typemap(lang,ret)

Cleans up the return result of a function. This code is executed immediately before
returning control back to the scripting language.

$source Result of the C function
Version 1.1, June 24, 1997

SWIG Users Guide 24
$type C datatype
$mangle String representation of datatype
$basetype Base C datatype
$name Function name

%typemap(lang,varin)

Sets the value of a C global variable. Not supported in all languages.

$source Scripting language object
$target C global variable
$type C datatype
$mangle String representation of datatype
$basetype Base C datatype
$name Name of the variable.

%typemap(lang,varout)

Retrieves the value of a C global variable. Not supported by all languages.

$source C Global variable
$target Scripting language object
$type C datatype
$mangle String representation of datatype
$basetype Base C datatype
$name Name of the C variable.
Version 1.1, June 24, 1997

	Command Line Options
	General Options
	Comment handling
	Documentation Processing
	Tcl Options (available with -tcl or -tcl8)
	Perl5 Options (available with -perl5)
	Python Options (available with -python)
	Perl4 Options (available with -perl4)

	SWIG Directives
	Documentation style options
	Comment processing
	ASCII Documentation
	HTML Documentation
	LaTeX Documentation

	Typemap Methods

