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SWIG and Python

This chapter describes SWIG’s support of Python. Many of the example presented here will have
a scientific bias given Python’s increasing use in scientific applications (this is how | primarily
use Python), but the techniques are widely applicable to other areas.

Preliminaries

SWIG 1.1 works with Python 1.3 and Python 1.4. Given the choice, you should use the latest ver-
sion of Python. You should also determine if your system supports shared libraries and dynamic
loading. SWIG will work with or without dynamic loading, but the compilation process will
vary.

Running SWIG
To build a Python module, run SWIG using the - pyt hon option :

%w g - python exanpl e. i

This will produce 2 files. The file exanpl e_wr ap. c contains all of the C code needed to build a
Python module and a documentation file describes the resulting interface. To build a Python
module, you will need to compile the file exanpl e_wr ap. ¢ and link it with the rest of your pro-
gram (and possibly Python itself). When working with shadow classes, SWIG will also produce a
. py file, but this is described later.

Getting the right header files

In order to compile, you need to locate the following directories that are part of the Python distri-
bution :

For Python 1.3 :

/usr/1ocal/include/ Py
Jusr/local/libl/python/lib

For Python 1.4 :

[usr/local /include/ pyt honl. 4
/usr/local/lib/pythonl.4/config

The exact location may vary on your machine, but the above locations are typical.
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Compiling a dynamic module

To build a shared object file, you need to compile your module in a manner similar to the follow-
ing (shown for Irix):

% swi g -python exanple.i

%gcc -c exanple.c

%gcc -c exanpl e_wap.c -DHAVE CONFI G H -1/ usr/ Il ocal /i ncl ude/ pyt honl. 4 \
-1/usr/local/lib/pythonl. 4/ config

%1 d -shared exanpl e.o exanpl e_wap.o -o exanpl enodul e. so

Unfortunately, the process of building a shared obiject file varies on every single machine so you
may need to read up on the man pages for your C compiler and linker.

When building a dynamic module, the name of the output file is important. If the name of your
SWIG module is “exanpl e”, the name of the corresponding object file should be “exanpl em
odul e. so” (or equivalent depending on your machine). The name of the module is specified
using the %rodul e directive or - nodul e command line option.

While dynamic loading is the preferred method for making SWIG modules, it is not foolproof
and not supported on all machines. In these cases, you can rebuild the Python interpreter with
your extensions added.

Rebuilding the Python interpreter (aka. static linking)

The normal procedure for adding a new module to Python involves finding the Python source,
adding an entry to the Mbdul es/ Set up file, and rebuilding the interpreter using the Python
Makefile. While it’s possible to simplify the process by using the VPATH feature of ‘make’, I've
always found the process to be a little too complicated.

SWIG provides an extremely easy, although somewhat unconventional, mechanism for rebuild-
ing Python using SWIG’s library feature. When you want to build a static version of Python, sim-
ply make an interface file like this :

%rodul e exanpl e

extern int fact(int);
extern int nmod(int, int);
extern doubl e My_vari abl e;

% ncl ude enbed. i /1 Include code for a static version of Python

The enbed. i library file includes supporting code that contains everything needed to rebuild
Python. To build your module, simply do the following :

% swi g -python exanpl e. i

% gcc exanpl e. ¢ exanpl e_wrap.c -DHAVE_CONFI G H -1/ usr/ 1 ocal /incl ude/ pyt honl. 4 \
-1/usr/local/lib/pythonl.4/config \
-L/usr/local/libl/pythonl.4/config -1 Mdules -IPython -1 Chjects -1 Parser -Im\

-0 nypyt hon

On some machines, you may need need to supply additional libraries on the link line. In particu-
lar, you may need to supply - | socket, -1 nsl,and-Idl.
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It is also possible to add the embed.i library to an existing interface by running SWIG as follows :
% swi g -python -1 enbed.i exanple.i

The enbed. i file uses all of the modules that are currently being used in your installed version
of Python. Thus, your new version of Python will be identical to the old one except with your
new module added. If you have configured Python to use modules such as t ki nt er, you may
need to supply linkage to the Tcl/Tk libraries and X11 libraries.

Python’s mai n() program is rather unfriendly towards C++ code, but SWIG’s enbed. i module
provides a replacement that can be compiled with the C++ compiler--making it easy to build
C++ Python extensions.

The enbed. i library should only be used with Python 1.4. If you are using Python 1.3, you
should use the file enbed13. i instead (this can be done by making a symbolic link in the SWIG
library) or simply using the - | option.

Using your module

To use your module in Python, simply use Python’s import command. The process is identical
regardless of whether or not you used dynamic loading or rebuilt the Python interpreter :

% pyt hon

>>> i nport exanpl e
>>> exanpl e. fact (4)
24

>>>

Compilation problems and compiling with C++

For the most part, compiling a Python module is straightforward, but there are a number of
potential problems :

= Dynamic loading is not supported on all machines. If you can’t get a module to build,
you might try building a new version of Python using static linking instead.

< Inorder to build C++ modules, you may need to link with the C++ compile using a com-
mand like ‘c++ -shared exanpl e_w ap. o exanple.o -o exanpl enodul e. so’

< If building a dynamic C++ module using g++, you may also need to link against | i b-
gcc. a,l i bg++. a,and | i bst c++. a libraries.

= Make sure you are using the correct header files and libraries. A module compiled with
Python 1.3 headers probably won’t work with Python 1.4.

Building Python Extensions under Windows 95/NT

Building a SWIG extension to Python under Windows 95/NT is roughly similar to the process
used with Unix. Normally, you will want to produce a DLL that can be loaded into the Python
interpreter.  This section covers the process of using SWIG with Microsoft Visual C++ 4.x
although the procedure may be similar with other compilers. SWIG currently supports both the
basic Python release and Pythonwin. In order to build extensions, you will need to download
the source distribution to these packages as you will need the Python header files.
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Running SWIG from Developer Studio

If you are developing your application within Microsoft developer studio, SWIG can be invoked
as a custom build option.  The process roughly follows these steps :

= Open up a new workspace and use the AppWizard to select a DLL project.

= Add both the SWIG interface file (the .i file), any supporting C files, and the name of the
wrapper file that will be created by SWIG (ie. exanpl e_wr ap. c). Note : If using C++,
choose a different suffix for the wrapper file such as exanpl e_wr ap. cxx. Don’t worry if
the wrapper file doesn’t exist yet--Developer Studio will keep a reference to it around.

= Select the SWIG interface file and go to the settings menu. Under settings, select the
“Custom Build” option.

= Enter “SWIG” in the description field.

e Enter“swig -python -o $(ProjDir)\$(Input Nane) _wrap.c $(I nputPath)”
in the “Build command(s) field”

e Enter “$(Proj Di r)\ $(I nput Nane) _wr ap. c¢” in the “Output files(s) field”.

= Next, select the settings for the entire project and go to “C++:Preprocessor”. Add the
include directories for your Python installation under “Additional include directories”.

= Define the symbol _ WIN32__ under preprocessor options.

= Finally, select the settings for the entire project and go to “Link Options”. Add the
Python library file to your link libraries. For example “pythonl4.lib”. Also, set the name
of the output file to match the name of your Python module (ie. example.dll).

= Build your project.

Now, assuming all went well, SWIG will be automatically invoked when you build your project.
Any changes made to the interface file will result in SWIG being automatically invoked to pro-
duce a new version of the wrapper file. To run your new Python extension, simply run Python
and use the i nport command as normal. For example :

MBDOS > pyt hon

>>> jnport exanpl e

>>> print exanpl e. fact (4)
24

>>>

Using NMAKE

Alternatively, SWIG extensions can be built by writing a Makefile for NMAKE. Make sure the
environment variables for MSVC++ are available and the MSVC++ tools are in your path. Now,
just write a short Makefile like this :

# Makefile for building a Python extension

SRCS = exanpl e.c

| FI LE = exanpl e

| NTERFACE = $(IFILE).i
WRAPFI LE = $(IFILE)_wap.c

# Location of the Visual C++ tools (32 bit assumed)

TOALS
TARCGET

c: \ nmsdev
exanpl e. dl |
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cC = $(TOLS)\ bi n\cl . exe
LI NK $(TOLS) \ bi n\ i nk. exe
I NCLUDE32 -1$(TOALS) \i ncl ude
MACH NE | X86

# C Library needed to build a DLL

DLLI BC = nsvert.lib oldnanes.lib

# Wndows libraries that are apparently needed

WNLI B = kernel 32.1ib advapi 32.1ib user32.1ib gdi32.1ib comdl g32.1ib

wi nspool . l'ib

# Libraries common to all DLLs
LI BS = $(DLLIBO $(WNLIB)

# Linker options
LCPT = -debug: full -debugtype: cv / NCDEFAULTLI B / RELEASE / NOLOG0 \
/ MACH NE: $(MACH NE) -entry:_D | Mai nCRTSt art up@2 -dl |

# C conpiler flags

CFLAGS = /27 /A /c /nol ogo
PY_I NCLUDE = -ld:\python-1.4\Include -1d:\python-1.4 -1d:\python-1.4\Pc
PY_LIB = d:\ pyt hon- 1. 4\ vc40\ pyt hon14.1i b

PY FLAGS = /D_WN32__

pyt hon: :
swi g -python -o $(WRAPFI LE) $(| NTERFACE)
$(Q0) $(COFLAGS) $(PY_FLAGS) $(PY_INCLUDE) $(SRCS) $(WRAPFI LE)
set LIB=$(TOLS)\lib
$(LINK) $(LCPT) -out:exanple.dl | $(LIBS) $(PY_LIB) exanple.obj exanpl e_w ap. obj

To build the extension, run NMAKE (you may need to run vcvar s32 first). This is a pretty sim-
plistic Makefile, but hopefully its enough to get you started.

The low-level Python/C interface

The SWIG Python module is based upon a basic low-level interface that provides access to C
functions, variables, constants, and C++ classes. This low-level interface is often used to create
more sophisticated interfaces (such as shadow classes) so it may be hidden in practice.

Modules

The SWIG %rodul e directive specifies the name of the Python module. If you specified ‘%rod-
ul e exanpl e’, then everything found in a SWIG interface file will be contained within the
Python ‘exanpl e’ module. Make sure you don’t use the same name as a built-in Python com-
mand or standard module or your results may be unpredictable.

Functions
C/C++ functions are mapped directly into a matching Python function. For example :

%rodul e exanpl e
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extern int fact(int n);
gets turned into the Python function exanpl e. fact (n) :

>>> jnport exanpl e

>>> print exanpl e. fact (4)
24

>>>

Variable Linking

SWIG provides access to C/C++ global variables, but the mechanism is slightly different than
one might expect due to the object model used in Python. When you type the following in
Python :

a=34
“a” becomes a name for an object containing the value 3.4. If you later type
b =a

Then “a” and “b” are both names for the object containing the value 3.4. In other words, there is
only one object containing 3.4 and “a” and “b” are both names that refer to it. This is a very dif-
ferent model than that used in C. For this reason, there is no mechanism for mapping “assign-
ment” in Python onto C global variables (because assignment is Python is really a naming
operation).

To provide access to C global variables, SWIG creates a special Python object called ‘cvar ’ that is
added to each SWIG generated module. This object is used to access global variables as follows :

/1 SWGinterface file with global variables
%rodul e exanpl e

extern int M/_vari abl e;
ext ern doubl e density;

Now in Python :

>>> jnport exanpl e

>>> # Print out value of a C global variable

>>> print exanple.cvar. M/_variabl e

4

>>> # Set the value of a C global variable

>>> exanpl e. cvar.density = 0. 8442

>>> # ke in a math operation

>>> exanpl e. cvar. density = exanpl e. cvar. density*1. 10

Just remember, all C globals need to be prefixed with a “cvar.” and you will be set. If you
would like to use a name other than “cvar ”, it can be changed using the - gl obal s option :

% swi g -python -global s nyvar exanpl e. i

Some care is in order when importing multiple SWIG modules. If you use the “from <fil e>
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i mport *” style of importing, you will get a name clash on the variable ‘cvar ’ and will only be
able to access global variables from the last module loaded. SWIG does not create cvar if there
are no global variables in a module.

Constants

C/C++ constants are installed as new Python objects containing the appropriate value. These
constants are given the same name as the corresponding C constant. “Constants” are not guaran-
teed to be constants in Python---in other words, you are free to change them and suffer the conse-
quences!

Pointers
Pointers to C/C++ objects are represented as character strings such as the following :

_100f 8e2_Vector_p

A NULL pointer is represented by the string “NULL”. You can also explicitly create a NULL
pointer consisting of the value 0 and a type such as :

_0_ Vector_p

To some Python users, the idea of representing pointers as strings may seem strange, but keep in
mind that pointers are meant to be opaque objects. In practice, you may never notice that point-
ers are character strings. There is also a certain efficiency in using this representation as it is easy
to pass pointers around between modules and it is unnecessary to rely on a new Python
datatype. Eventually, pointers may be represented as special Python objects, but the string repre-
sentation works remarkably well so there has been little need to replace it.

Structures
The low-level SWIG interface only provides a simple interface to C structures. For example :

struct Vector {
doubl e Xx,vy, z;

b
gets mapped into the following collection of C functions :

doubl e Vector_x_get (Vector *obj)
doubl e Vector_x_set(Vector *obj, double x)
doubl e Vector_y get(Vector *obj)
doubl e Vector_y set(Vector *obj, double y)
doubl e Vector _z_get (Vector *obj)
doubl e Vector_z_set(Vector *obj, double z)

These functions are then used in the resulting Python interface. For example :

# v is a Vector that got created somehow
>>> \lect or _x_get (V)

3.5

>>> Vector_x_set(v, 7. 8) # Change x component
>>> print Vector_x_get(v), Vector_y get(v), Vector_z_get(v)
7.8 -4.50.0

>>>
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Similar access is provided for unions and the data members of C++ classes.

C++ Classes

C++ classes are handled by building a set of low level accessor functions. Consider the following
class:

class List {

publ i c:
List();
~List();
int search(char *itenj;
void insert(char *iten);
voi d rermove(char *iten);
char *get(int n);
int |ength;

static void print(List *I);

}

When wrapped by SWIG, the following functions will be created :

Li st *new List();

voi d del ete List(List *1);

int Li st_search(List *I, char *iten);
voi d List_insert(List *I, char *itenj;
voi d Li st _rermove(List *I, char *iten);
char *List_get(List *I, int n);

int Li st _length_get (List *I);

int List _length set(List *I, int n);
voi d List_print(List *I);

Within Python, these functions used to access the C++ class :

>>> | = new_List()

>>> List_insert(l,”Ale")
>>> List_insert(l,”Stout”)
>>> List _insert(l,”Lager”)
>>> List_print(l)

Lager

St out

Ae

>>> print List_|length_get(l)
3

>>> print |

1008560_Li st_p
>>>

C++ objects are really just pointers. Member functions and data are accessed by simply passing a
pointer into a collection of accessor functions that take the pointer as the first argument.

While somewhat primitive, the low-level SWIG interface provides direct and flexible access to

C++ objects. As it turns out, a more elegant method of accessing structures and classes is avail-
able using shadow classes.
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Python shadow classes

The low-level interface generated by SWIG provides access to C structures and C++ classes, but
it doesn’t look much like a class that might be created in Python. However, it is possible to use
the low-level C interface to write a Python class that looks like the original C++ class. In this case,
the Python class is said to “shadow” the C++ class. That is, it behaves like the original class, but
is really just a wrapper around a C++ class.

A simple example
For our earlier List class, a Python shadow class could be written by hand like this :

class List:
def __init_ (self):
self.this = new List()
def _ del _ (self):
del ete_List(self.this)
def search(self,iten):
return List_search(self.this,iten)
def insert(self,iten):
List_insert(self.this,iten)
def renove(self,iten):
Li st _renove(self.this,itemn)
def get(self,n):
return List_get(self.this,n)
def _ getattr_ (self, nane):

if name == “length”: return List_length get(self.this))
el se : return self.__dict__[nane]

def _ setattr__ (self, nane, val ue):
if name == “length”: List_|length_set(self.this,value)
el se : self.__dict__[nane] = val ue

When used in a Python script, we can use the class as follows :

>>> | = List()

>>> | .insert(“Ae")
>>> | .insert(“Stout”)
>>> | .insert(“Lager”)
>>> List_print(l.this)
Lager

St out

Ae

>>> | .l ength

3

Obviously, this is a much nicer interface than before--and it only required a small amount of
Python coding.

Why write shadow classes in Python?

While one could wrap C/C++ objects directly into Python as new Python types, this approach
has a number of problems. First, as the C/C++ code gets complicated, the resulting wrapper
code starts to become extremely ugly. It also becomes hard to handle inheritance and more
advanced language features. A second, and more serious problem, is that Python “types” created
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in C can not be subclassed or used in the same way as one might use a real Python class. As a
result, it is not possible to do interesting things like create Python classes that inherit from C++
classes.

By writing shadow classes in Python instead of C, the classes become real Python classes that can
be used as base-classes in an inheritance hierarchy or for other applications. Writing the shadow
classes in Python also greatly simplies coding complexity as writing in Python is much easier
than trying to accomplish the same thing in C. Finally, by writing shadow classes in Python, they
are easy to modify and can be changed without ever recompiling any of the C code. The down-
side to this approach is worse performance--a concern for some users.

The problems of combining C++ and Python have been of great interest to the Python commu-
nity. SWIG is primarily concerned with accessing C++ from Python. Readers who are inter-
ested in more than this (and the idea of accessing Python classes from C++) are encouraged to
look into the MESS extension which aims to provide a tighter integration between C++ and
Python. The recently announced GRAD package also shows much promise and provides very
comprehensive C++/Python interface.

Automated shadow class generation
SWIG can automatically generate shadow classes if you use the - shadowoption :

swi g -python -shadow i nterface.i

This will create the following two files :

interface_ wap.c
nodul e. py

The filei nt er f ace_wr ap. ¢ contains the normal SWIG C/C++ wrappers. The file nodul e. py
contains the Python code corresponding to shadow classes. The name of this file will be the same
as specified by the %odul e directive in the SWIG interface file.

Associated with the two files are TWO Python modules. The C module ‘nodul ec’ contains the
low-level C interface that would have been created without the - shadow option. The Python
module ‘nodul e’ contains the Python shadow classes that have been built around the low-level
interface. To use the module, simply use ‘i nport nodul e’. For all practical purposes, the ‘nod-
ul ec’ module is completely hidden although you can certainly use it if you want to.

Compiling modules with shadow classes

To compile a module involving shadow classes, you can use the same procedure as before except
that the module name now has an extra ‘c’ appended to the name. Thus, an interface file like this

%rodul e exanpl e
. a bunch of declarations ...

might be compiled as follows :

% swi g - pyt hon -shadow exanpl e. i
% gcc -c exanpl e.c exanpl e_wap.c -1/usr/local/include/pythonl. 4 \
-1/usr/local/lib/pythonl. 4/ config - DHAVE CONFI G H
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%1 d -shared exanpl e. o exanpl e_wap.o -0 exanpl ecnodul e. so

Notice the naming of ‘exanpl ecnodul e. so’ as opposed to ‘exanpl enodul e. so’ that would
have been created without shadow classes.

When using static linking, no changes need to be made to the compilation process.

Where to go for more information

Shadow classes turn out to be so useful that they are used almost all of the time with SWIG. All
of the examples presented here will assume that shadow classes have been enabled. The precise
implementation of shadow classes is described at the end of this chapter and is not necessary to
effectively use SWIG.

About the Examples

The next few sections will go through a series of Python examples of varying complexity. These
examples are designed to illustrate how SWIG can be used to integrate C/C++ and Python in a
variety of ways. Some of the things that will be covered include :

= Controlling a simple C++ program with Python
Wrapping a C library.

Adding Python methods to existing C++ classes
Accessing arrays and other common data structures.
Building reusable components.

Writing C/C++ callback functions in Python.

Solving a simple heat-equation

In this example, we will show how Python can be used to control a simple physics application--
in this case, some C++ code for solving a 2D heat equation. This example is probably overly sim-
plistic, but hopefully it’s enough to give you some ideas.

The C++ code
Our simple application consists of the following two files :

// File : pde.h
// Header file for Heat equation sol ver

#i ncl ude <mat h. h>
#i ncl ude <stdio. h>

/! Asinmple 2D GQid structure
// A sinmple structure for holding a 2D grid of val ues

struct Gidad {
@id2d(int ni, int nj);

~Qid2d();

doubl e **dat a;
int Xpoi nt s;
int ypoi nt s;
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/1 Sinple class for solving a heat equation */
cl ass Heat 2d {

private:

Qidad *wor k; /1l Tenporary grid, needed for sol ver

doubl e h, k; /1 &id spacing
publ i c:

Heat 2d(int ni, int nj);

~Heat 2d() ;

aidad *grid; /1 Data

doubl e dt; /1 Tinmestep

doubl e tine; /1l Hapsed time

voi d sol ve(int nsteps); /1 Run for nsteps

voi d set _tenp(doubl e tenp); /1 Set tenperature
b

The supporting C++ code implements a simple partial differential equation solver and some
operations on the grid data structure. The precise implementation isn’t important here, but all
of the code can be found in the “Exanpl es/ pyt hon/ manual " directory of the SWIG distribu-
tion.

Making a quick and dirty Python module

Given our simple application, making a Python module is easy. Simply use the following SWIG
interface file :

/1 File : pde.i
%rodul e pde

%

#i ncl ude "pde. h"
%

% ncl ude pde. h

Since pde. h is fairly simple, we can simply include it directly into our interface file using
% ncl ude. However, we also need to make sure we also include it in the %, %4 block--other-
wise we’ll get a huge number of compiler errors when we compile the resulting wrapper file.

To build the module simply run SWIG with the following options
SwW g - pyt hon -shadow pde. i

and compile using the techniques described in the beginning of this chapter.

Using our new module

We are now ready to use our new module. To do this, we can simply write a Python script like
this:

# Afairly uninteresting exanpl e

frompde inport *

h = Heat 2d( 50, 50) # Oreates a new “probl ent
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h. set _tenp(1.0)
print "Dt =", h.dt

# Sol ve sonet hi ng
for i in range(0,25):

h. sol ve(100)
print "time =", h.time

When run, we get rather exciting output such as the following :

D = 2.5e-05
time = 0.0025
time = 0.005
time = 0.0075
tine = 0.06

time = 0.0625

(okay, it’s not that exciting--well, maybe it is if you don’t get out much).

While this has only been a simple example it is important to note that we could have just as eas-
ily written the same thing in C++. For example :

/1 Python exanple witten in G+t

#i ncl ude "pde. h"
#i ncl ude <stdio. h>

int main(int argc, char **argv) {
Heat 2d *h;

h = new Heat 2d( 50, 50) ;
printf ("Dt = %\n", h->dt);

h->set _tenp(1.0);

for (int i =0; i <25 i++) {
h->sol ve(100) ;
printf("tinme = %g\n", h->time);
}
}

For the most part, the code looks identical (although the Python version is simpler). As for per-
formance, the Python version runs less than 1% slower than the C++ version on my machine.
Given that most of the computational work is written in C++, there is very little performance
penalty for writing the outer loop of our calculation in Python in this case.

Unfortunately, our Python version suffers a number of drawbacks. Most notably, there is no way

for us to access any of the grid data (which is easily accomplished in C++). However, there are
ways to fix this :
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Accessing array data

Let’s modify our heat equation problem so that we can access grid data directly from Python.
This can be done by modifying our interface file as follows :

%rodul e pde

%

#i ncl ude "pde. h"
%

% ncl ude pde. h

// Add a few "hel per" functions to extract grid data

%nline %

double @id2d get(@id2d *g, int i, int j) {
return g->datali][j];

}

voi d Qid2d_set(@id2d *g, int i, int j, double val) {
g->datali][j] = val;

}

%

Rather than modifying our C++ code, it is easy enough to supply a few accessor functions
directly in our interface file. These function may only be used from Python so this approach
makes sense and it helps us keep our C++ code free from unnecessary clutter. The % nl i ne
directive is a convenient method for adding helper functions since the functions you declare
show up in the interface automatically.

We can now use our accessor functions to write a more sophisticated Python script :

# An exanpl e using our set/get functions
frompde inport *

# Set up an initial condition
def initcond(h):
h. set _tenp(0.0)
nx = h.grid. xpoints
for i in range(0,nx):
Qid2d_set(h.grid,i,0,1.0) # Set grid val ues

# Dunp out to a file
def dunp(h, filenane):
f = open(filenane,"w')
nx = h.grid.xpoints
ny = h.grid.ypoints
for i in range(0, nx):
for j in range(0,ny):
f.wite(str(Gid2d get(h.grid,i,j))+"'\n") # Get grid val ue
f.close()

# Set up a problemand run it
h = Heat 2d( 50, 50)
i ni t cond(h)

fileno = 1
for i in range(0,25):
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h. sol ve(100)
durp(h, "Dat " +str (fil eno))
print "time =", h.time
fileno = fil eno+l

We now have a Python script that can create a grid, set up an initial condition, run a simulation,
and dump a collection of datafiles. So, with just a little supporting code in our interface file, we
can start to do useful work from Python.

Use Python for control, C for performance

Now that it is possible to access grid data from Python, it is possible to quickly write code for all
sorts of operations. However, Python may not provide enough performance for certain opera-
tions. For example, the dunp() function in the previous example may become quite slow as
problem sizes increase. Thus, we might consider writing it in C++ such as the follows:

voi d dunp(Heat2d *h, char *fil enane) {
FI LE *f;
i nt i,
f = fopen(fil enare, "W');
for (i =0; i < h->grid->xpoints; i++)
for (j =0; j < h->grid->ypoints; j++)
fprintf(f,"9®.17f\n", h->grid->data[i][j]);
fclose(f);

}

To use this new function, simple put its declaration in the SWIG interface file and get rid of the
old Python version. The Python script won’t know that you changed the implementation.

Getting even more serious about array access

We have provided access to grid data using a pair of get/set functions. However, using these
functions is a little clumsy because they always have to be called as a separate function like this :

@id2d_set(grid,i,j,1.0)

It might make more sense to make the get/set functions appear like member functions of the
Gri d2Dclass. That way we could use them like this :

grid.set(i,j,1.0)
grid.get(i,j)

SWIG provides a simple technique for doing this as illustrated in the following interface file :

%rodul e pde

%

#i ncl ude "pde. h"
%

% ncl ude pde. h
// Add a few "hel per" functions to extract grid data

%
double @id2d get(@id2d *g, int i, int j) {
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return g->datali][j];

}

voi d Qid2d_set(@id2d *g, int i, int j, double val) {
g->datali][j] = val;

}

%
/1 Now add these hel per functions as nmethods of Gid2d

%ddnet hods Gi d2d {
doubl e get(int i, int j); /] Gets expanded to Qi d2d_get ()
void set(int i, int j, double val); // Gets expanded to Qi d2d_set ()

}

The %addnet hods directive tells SWIG that you want to add new functions to an existing C++
class or C structure for the purposes of building an interface. In reality, SWIG leaves the original
C++ class unchanged, but the resulting Python interface will have some new functions that
appear to be class members.

SWIG uses a naming convention for adding methods to a class. If you have a class Foo and you
add a member function bar(args), SWIG will look for a function called
Foo_bar (thi s, args) that implements the desired functionality. You can write this function
yourself, as in the previous interface file, but you can also just supply the code immediately after
a declaration like this :

%rodul e pde

%

#i ncl ude "pde. h"
%

% ncl ude pde. h

// Add some new accessor nethods to the Gid2D cl ass
%ddnet hods Gid2d {

doubl e get(int i, int j) {
return self->datafi][j];
b
void set(int i, int j, double val) {

self->data[i][j] = val;

¥

In this case, SWIG will take the supplied code, and automatically generate a function for the
method. The special variable “sel f ” is used to hold a pointer to the corresponding object. The
sel f pointer is exactly like the C++ “t hi s pointer, except that the name has been changed in
order to remind you that you aren’t really writing a real class member function. (Actually, the
real reason we can’t use “this” is because the C++ compiler will start complaining!)

Finally, it is worth noting that the ¥%addmet hods directive may also be used inside a class defini-
tion like this :

struct Gidad {
@idad(int ni, int nj);
~@id2d();
doubl e **dat a;
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int Xpoi nt s;
int ypoi nt s;
%ddnet hods {
double get(int i, int j);
void set(int i, int j, double value);
}

}s

This latter case is really only useful if the C++ class definition is included in the SWIG interface
file itself. If you are pulling the class definition out of a separate file or a C++ header file, using a
separate ¥Yaddnet hods directive is preferable. It doesn’t matter if the %addnet hods directive
appears before or after the real class definition--SWIG will correctly associate the two definitions.

Okay, enough talk. By adding the set/get functions as methods, we can now change our Python
script to look like this (changes are underlined) :

# An exanpl e using our new set/get functions
frompde inport *
# Set up an initial condition

def initcond(h):
h. set _tenp(0. 0)
nx = h.grid. xpoints
for i in range(0,nx):
h.grid.set(i,0,1.0) # Note changed interface

# Dunp out to a file
def dunp(h, filename):
f = open(filenane, "w')
nx = h.grid. xpoints
ny = h.grid.ypoints
for i in range(0,nx):
for j in range(0,ny):
f.wite(str(h.grid.get(i,j))+"\n")

f.close()
# Set up a problemand run it

h = Heat 2d( 50, 50)
i ni t cond( h)
fileno = 1

for i in range(0,25):
h. sol ve(100)
h. dunp(" Dat " +str (fil eno))
print "time =", h.time
fileno = fileno+l

Now it’s starting to look a little better, but we can do even better...

Implementing special Python methods in C

Now that you’re getting into the spirit of things, let’s make it so that we can access our Gi d2D
data like a Python array. As it turns out, we can do this with a little trickery in the SWIG inter-
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face file. Don’t forget to put on your Python wizard cap...

I/ SWGinterface file with Python array met hods added

%rodul e pde

%

#i ncl ude "pde. h"
%

% ncl ude pde. h

%nline %
/] Define a new @id2d row cl ass
struct Qi d2dRow {

Qidad *g; /I aid
i nt row, /1 Row nurber
/1 These functions are used by Python to access sequence types (lists, tuples, ...)

double _getitem_ (int i) {
return g->datafrow [i];
s
void __setitem_ (int i, double val) {
g->data[row[i] = val;
b
}s
%

// Now add a __getitem__nmethod to Gid2D to return a row
%ddnet hods Gi d2d {
Qid2dRow __getitem (int i) {
Qid2dRow r;
r.g = self;
r.row=i;
return r;
b
b

We have now replaced our get/set functions with the _ getitem and__setitem _ func-
tions that Python needs to access arrays. We have also added a special G i d2dRowclass. This is
needed to allow us to make a funny kind of “multidimensional” array in Python (this may take a
few minutes of thought to figure out). Using this new interface file, we can now write a Python
script like this :

# An exanpl e script using our array access functions
frompde inport *
# Set up an initial condition
def initcond(h):

h. set _tenp(0. 0)

nx = h.grid. xpoints

for i in range(0,nx):

h.grid[i][0] =1.0 # Note nice array access

# Set up a problemand run it

h = Heat 2d( 50, 50)
i ni t cond(h)
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fileno = 1

for i in range(0,25):
h. sol ve(100)
h. dunp(" Dat "+str (fil eno))
print "time =", h.time
fileno = fileno+l

# Cal cul ate average tenperature over the region

sum= 0.0
for i in range(0,h.grid.xpoints):
for j in range(0, h.grid.ypoints):
sum= sum+ h.grid[i][]j # Note nice array access

avg = suni (h. grid. xpoi nts*h. grid. ypoi nts)

print "Avg tenperature = ", avg

Summary (so far)

In our first example, we have taken a very simple C++ problem and wrapped it into a Python
module. With a little extra work, we have been able to provide array type access to our C++ data
from Python and to write some computationally intensive operations in C++. At this point, it
would easy to write all sorts of Python scripts to set up problems, run simulations, look at the
data, and to debug new operations implemented in C++,

Wrapping a C library

In this next example, we focus on wrapping the gd-1.2 library. gd is public domain library for
fast GIF image creation written by Thomas Boutell and available on the internet. gd-1.2 is copy-
right 1994,1995, Quest Protein Database Center, Cold Spring Harbor Labs. This example
assumes that you have gd-1.2 available, but you can use the ideas here to wrap other kinds of C
libraries.

Preparing a module

Wrapping a C library into a Python module usually involves working with the C header files
associated with a particular library. In some cases, a header file can be used directly (without
modification) with SWIG. Other times, it may be necessary to copy the header file into a SWIG
interface file and make a few touch-ups and modifications. In either case, it’s usually not too dif-
ficult.

To make a module, you can use the following checklist :

= Locate the header files associated with a package

= Look at the contents of the header files to see if SWIG can handle them. In particular,
SWIG can not handle excessive use of C preprocessor macros, or non-ANSI C syntax. The
best way to identify problems is to simply run SWIG on the file and see what errors (if
any) get reported.

< Make a SWIG interface file for your module specifying the name of the module, the
appropriate header files, and any supporting documentation that you would like to pro-
vide.
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< Ifthe header file is clean, simply use SWIG’s % ncl ude directive. If not, paste the header
file into your interface file and edit it until SWIG can handle it.
= Clean up the interface by possibly adding supporting code, deleting unnecessary func-
tions, and eliminating clutter.

= Run SWIG and compile.

In the case of the gd library, we can simply use the following SWIG interface file :

%rodul e gd

%

#i ncl ude "gd. h"
%

%ection "gd-1.2",ignore

% ncl ude "gd. h”

/1 These will cone in handy | ater
FI LE *fopen(char *, char *);

voi d fclose(Fl LE *f);

In this file, we first tell SWIG to put all of the gd functions in a separate documentation section
and to ignore all comments. This usually helps clean up the documentation when working with
raw header files. Next, we simply include the contents of “gd.h” directly. Finally, we provide

wrappers to f open() and f cl ose() since these will come in handy in our Python interface.

If we give this interface file to SWIG, we will get the following output :

% swi g - pyt hon - shadow
Generating wappers for Python

/usr/1ocal /include/gd.
/usr/1ocal /include/gd.
/usr/l ocal /i ncl ude/ gd.
/usr/l ocal /incl ude/ gd.
/usr/local/incl ude/ gd.
[usr/local /incl ude/ gd.

%

h:

jum pien i ien Men

Li ne
Li ne
Li ne
Li ne
Li ne
Li ne

32.
33.
34.
35.
41.
42,

Arrays
Arrays
Arrays
Arrays
Arrays
Arrays

not
not
not
not
not
not

-1/usr/local/include gd.i

currently
currently
currently
currently
currently
currently

supported (ignored).
supported (ignored).
supported (ignored).
supported (ignored).
supported (ignored).
supported (ignored).

While SWIG was able to handle most of the header file, it also ran into a few unsupported decla-
rations---in this case, a few data structures with array members. However, the warning mes-

sages also tell us that these declarations have simply been ignored.

Thus, we can choose to

continue and build our interface anyways. As it turns out in this case, the ignored declarations
are of little or no consequence so we can ignore the warnings.

If SWIG is unable to process a raw header file or if you would like to eliminate the warning mes-
sages, you can structure your interface file as follows :

%rodul e gd

%

#incl ude "gd. h"
%

%ection "gd-1.2",ignore
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. paste the contents of gd.h here and renmove problens ...
// A few extra support functions

FI LE *fopen(char *, char *);
voi d fclose(Fl LE *f);

This latter option requires a little more work (since you need to paste the contents of gd.h into
the file and edit it), but is otherwise not much more difficult to do. For highly complex C librar-
ies or header files that go overboard with the C preprocessor, you may need to do this more
often.

Using the gd module

Now, that we have created a module from the gd library, we can use it in Python scripts. The fol-
lowing script makes a simple image of a black background with a white line drawn on it. Notice
how we have used our wrapped versions of f open() and f cl ose() to create a FILE handle for
use in the gd library (there are also ways to use Python file objects, but this is described later).

# Sinple gd program
fromagd inport *

im= gdl nageO eat e( 64, 64)

bl ack = gdl mageCol or Al | ocat e(i m 0, 0, 0)

white = gdl nageCol or Al | ocat e(i m 255, 255, 255)
gdl nageLi ne(im 0, 0, 63, 63, white)

out = fopen("test.gif","w')

gdl mageG f (i m out)

fcl ose(out)

gdl mageDest roy(i m

That was simple enough--and it only required about 5 minutes of work. Unfortunately, our gd
module still has a few problems...

Extending and fixing the gd module

While our first attempt at wrapping gd works for simple functions, there are a number of prob-
lems. For example, the gd-1.2 library contains the following function for drawing polygons :

voi d gdl magePol ygon(gdl magePtr im gdPointPtr points, int pointsTotal, int color);

The gdl magePt r type is created by another function in our module and the parameters poi nt -
sTot al and col or are simple integers. However, the 2nd argument is a pointer to an array of
points as defined by the following data structure in the gd-1.2 header file :

typedef struct {
int x, vy;
} gdPoint, *gdPointPtr;

Unfortunately, there is no way to create a gdPoint in Python and consequently no way to call the
gdimagePolygon function. A temporary setback, but one that is not difficult to solve using the
%addret hods directive as follows :
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%rodul e gd

%

#i ncl ude "gd. h"
%

% ncl ude "gd. h"

/1 Fix up the gdPoint structure a little bit

%ddnet hods gdPoi nt {

// Constructor to nmake an array of “Points”
gdPoi nt (i nt npoi nts) {

return (gdPoint *) mall oc(npoints*sizeof (gdPoint));

b

/1 Destructor to destroy this array

~gdPoi nt () {

free(self);

b
/1 Python nethod for array access
gdPoint *__ getitem (int i) {

return sel f+i;
b
b

FI LE *fopen(char *, char *);
voi d fcl ose(FlLE *f);

With these simple additions, we can now create arrays of points and use the polygon function as
follows :

# Sinple gd program
fromgd inport *
i m= gdl nageQO eat e( 64, 64)

bl ack = gdl mageCol or Al | ocat e(i m 0, 0, 0)
whi te = gdl mageCol or Al | ocat e(i m 255, 255, 255)

pts = gdPoint (3); # Create an array of Points
pts[0].x,pts[0].y = (5,5) # Assign a set of points
pts[1].x,pts[1].y = (60, 25)

pts[2].x,pts[2].y = (16, 60)

gdl magePol ygon(i m pts, 3, whi te) # Draw a pol ygon fromour array of points

out = fopen("test.gif","w')
gdl mageG f (i m out)

fcl ose(out)

gdl mageDest roy(i m

Building a simple 2D imaging class

Now it’s time to get down to business. Using our gd-1.2 module, we can write a simple 2D
imaging class that hides alot of the underlying details and provides scaling, translations, and a
host of other operations. (It’s a fair amount code, but an interesting example of how one can take
a simple C library and turn it into something that looks completely different).
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# 1 mage. py

# Generic 2D I mage 4 ass

#

# Built using the 'gd-1.2" library by Thomas Boutell
#

inport gd

cl ass | nage:
def __init_ (self,w dth, height, xm n=0.0, ym n=0. 0, xmax=1. 0, ynax=1. 0) :
sel f.im= gd. gdl mageCr eat e(wi dt h, hei ght)

self.xmn = xnin

self.ymn = ynin

sel f.xmax = xmax

sel f.ymax = ynax

self.width = width

sel f. hei ght = hei ght

sel f.dx = 1. 0*(xmax- xni n)

sel f.dy = 1. 0*(ynax-ynin)

self.xtick = self.dx/10.0

sel f.ytick = self.dy/10.0

self.ticklen= 3

self.name = "image.qgif"

gd. gdl mageCol or Al | ocat e(sel f.imO0, 0, 0) # Bl ack
gd. gdl mageCol or Al | ocat e(sel f.im 255, 255, 255) # Wiite
gd. gdl mageCol or Al | ocat e(sel f.i m 255, 0, 0) # Red
gd. gdl mageCol or Al | ocat e(sel f. im0, 255, 0) # reen
gd. gdl mageCol or Al | ocat e(sel f.imO, 0, 255) # Bl ue

def _ del _ (self):
print "Del eting"
gd. gdl mageDestroy(sel f.in)

# Dunp out this inage to a file
def write(self, name="NONE"):
if name == "NONE":
name = sel f. nane
f = gd. fopen(nane, "w')
gd. gdl maged f(sel f.imf)
gd. f cl ose(f)
sel f. name = name

# Virtual nmethod that derived cl asses define
def draw(self):
print "No draw ng nethod specified."

# A conbination of wite and draw
def show(sel f,filename="NON\E"):
sel f.draw()
self.wite(fil enane)

# Load up a colormap froma Python array of (R GB) tuples
def col ormap(sel f, crmap):
for i in range(0, 255):
gd. gdl mageCol or Deal | ocate(sel f.imi)
for ¢ in cmap:
gd. gdl mageCol or Al | ocate(sel f.imc[0],c[1],c[2])

# Change vi ew ng region
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def region(self,xmn,ym n, xmax, ymax) :

self.xmn = xmn
self.ymn = ymn
sel f. xmax = xmax
sel f.ymax = ymax
sel f. dx = 1. 0*(xmax- xn n)
sel f.dy = 1. 0*(ynax-ynin)

# Transforns a 2D point into screen coordi nates

def transforn(self,x,y):
npt =[]
iX = (x-self.xmn)/self.dx*self.width + 0.5
iy = (self.ymax-y)/self.dy*self.height + 0.5
return (ix,iy)

# A few graphics primtives
def clear(self,color):
gd. gdl mageFi | | edRect angl e(sel f.imO0, O, sel f.wi dth, sel f. hei ght, col or)

def plot(self,x,y,color):
ix,iy = self.transforn(x,y)
gd. gdl mageSet Pi xel (self.imix, iy, col or)

def line(self,x1,yl,x2,y2, color):
ix1,iyl = self.transforn(x1,yl)
ix2,iy2 = self.transforn(x2,y2)
gd. gdl mageLi ne(sel f.imix1,iyl,ix2,iy2,color)

def box(self,x1,yl,x2,y2, color):
ix1,iyl = self.transforn(x1,yl)
ix2,iy2 = self.transforn(x2,y2)
gd. gdl mageRect angl e(sel f.imix1,iyl,ix2,iy2,color)

def solidbox(self,x1,yl,x2,y2,color):
ixl,iyl = self.transforn(x1,yl)
ix2,iy2 = self.transforn(x2,y2)
gd. gdl mageFi | | edRect angl e(sel f.imix1,iyl,ix2,iy2, color)

def arc(self,cx,cy,wh,s,e, color):
ix,iy = self.transforn{cx, cy)
iw=(x - self.xmn)/self.dx * self.width
ih=(y - self.ymn)/self.dy * self.height
gd. gdl mageArc(self.imix,iy,iwih,s,e,color)

def fill(self,x,y,color):
ix,iy = self.transforn(x,y)
gd. gdl mageFi | | (sel f,ix, iy, color)

def axis(self,color):
sel f.line(self.xmn,O0,self.xmax, 0, col or)
self.line(0,self.ynin,O,self.ynax, color)
x = -self.xtick*(int(-self.xmn/self.xtick)+1)
while x <= sel f.xnax:
ix,iy = self.transform(x, 0)
gd. gdl mageLi ne(sel f.imix,iy-self.ticklen,ix,iy+self.ticklen,color)
X = X + self.xtick
y = -self.ytick*(int(-self.ynmn/self.ytick)+1)
while y <= sel f.ynax:
ix,iy = self.transformn(0,y)
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gd. gdl mageLi ne(sel f.imix-self.ticklen,iy,ix+self.ticklen,iy,color)
y =y + self.ytick

# scalex(s). Scales the x-axis. s is given as a scaling factor
def scal ex(self,s):

xc = self.xmn + self.dx/2.0

dx = self.dx*s

Xxmn = xc - dx/2.0

Xmax = xc + dx/2.0

sel f.regi on(xm n, sel f.ym n, xmax, sel f. ymax)

# scaley(s). Scales the y-axis
def scal ey(self,s):
yc = self.ymn + self.dy/2.0
dy = self.dy*s
ymn =yc - dy/2.0
ymax = yc + dy/2.0
sel f.region(sel f.xmn,ym n, sel f.xmax, ymax)

# Zoons a current inmage. S is given as a percent
def zoon(self,s):

s = 100.0/s

sel f. scal ex(s)

sel f. scal ey(s)

# Move inmage left. s is given in range 0,100. 100 noves a full screen left
def left(self,s):

dx = self.dx*s/100.0

xmn = self.xmn + dx

xmax = sel f.xmax + dx

sel f.regi on(xm n, sel f.ym n, xmax, sel f. ymax)

# Move inmage right. s is given in range 0,100. 100 noves a full screen right
def right(self,s)
self.left(-5s)

# Move image down. s is given in range 0,100. 100 noves a full screen down
def down(self,s):

dy = self.dy*s/100.0

ymn = self.ymn + dy

ymax = sel f.ymax + dy

sel f.region(sel f.xmn,ym n, sel f.xmax, ymax)

# Move image up. s is given in range 0,100. 100 noves a full screen up
def up(self,s):
sel f. down(-s)

# Center inage

def center(self,x,y):
sel f.right (50-x)
sel f. up(50-y)

Our image class provides a number of methods for creating images, plotting points, making
lines, and other graphical objects. We have also provided some methods for moving and scaling
the image. Now, let’s use this image class to do some interesting things :
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A mathematical function plotter
Here’s a simple class that can be used to plot mathematical functions :

# funcpl ot . py
fromimage inport *

cl ass Pl ot Func(| mage):
def __init__(self,func, xn n, ym n, xmax, ynax, wi dt h=500, hei ght =500) :
Image. __init__(self,w dth, hei ght, xm n, ym n, xmax, ymax)
self.func = func # The function being plotted
sel f. npoints = 100 # Nunber of sanpl es
self.color =1
def draw(self):
sel f.clear(0)
lastx = self.xmn
lasty = sel f.func(l astx)
dx = 1.0*(sel f.xmax-sel f.xmn)/sel f.npoints
X = | ast x+dx
for i in range(O0,self.npoints):
y = sel f.func(x)
self.line(lastx,lasty,x,y,self.color)

lastx = x
lasty =y
X = X + dx

sel f.axis(1)

Most of the functionality is implemented in our base image class so this is pretty simple. How-
ever, if we wanted to make a GIF image of a mathematical function, we could just do this :

>>> fromfuncpl ot inport *

>>> jnport nmath

>>> p = Plot Func(l anbda x: 0.5*mat h. si n(x)+0. 75*mat h. si n(2*x) - 0. 6* nat h. si n(3*x),
-10, -2, 10, 2)

>>> p. show(“plot.gif")

Which would produce the following GIF image :
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Plotting an unstructured mesh

Of course, perhaps we want to plot something a little more complicated like a mesh. Recently, a
colleague came to me with some unstructured mesh data contained in a pair of ASCII formatted
files. These files contained a collection of points, and a list of connectivities defining a mesh on
these points. Reading and plotting this data in Python turned out to be relatively easy using the
following script and our image base class :

# pl ot nesh. py
# Plots an unstructured nmesh stored as an ASA I file
frominage inport *

inport string
cl ass Pl ot Mesh( | mage):
def __init__ (self,filenane, xm n,ym n, xmax, ymax, w dt h=500, hei ght =500) :
Image. __init__ (self,w dth, height, xnin, yn n, xnax, ynax)
# read in a nesh file in pieces
pts =[]
# Read in data points
atoi = string. at oi

atof = string. at of
f = open(filename+".pts","r")
npoi nts = atoi (f.readline())
for i in range(0, npoints):
| = string.split(f.readline())
pts.append((atof (I1[0]),atof (1[1])))
f.close()

# Read in nesh data

f = open(filename+".tris","r")

ntris = string.atoi (f.readline())

tris =1 ]

for i in range(0,ntris):
| = string.split(f.readline())
tris.append((atoi (I1[0])-1,atoi (I[1])-1,atoi(I[2])-1,atoi (1[3])))

f.close()

# Set up local attributes
self.pts = pts
sel f.npoints = npoints
self.tris =tris
self.ntris =ntris

# Draw nesh
def draw(self):
sel f.clear(0);
i =0
while i < self.ntris:

tri =self.tris[i]

ptl = self.pts[tri[0]]
pt2 = self.pts[tri[1]]
pt3 = self.pts[tri[2]]

# Now draw t he mesh
self.triangle(pt1[0],pt1[1],pt2[0],pt2[1],pt3[0],pt3[1],tri[3]);
i =i +1

# Draw a triangle
def triangle(self,xl,yl, x2,y2,x3,y3,color):
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sel f.line(x1,yl,x2,y2, color)
sel f.line(x2,y2,x3,y3,color)
sel f.line(x3,y3,x1,yl,color)

This class simply reads the data into a few Python lists, has a drawing function for making a plot,
and adds a special method for making triangles. Making a plot is now easy, just do this :

>>> from pl ot nesh. py inport *
>>> mesh = Pl ot Mesh(" nmesh", 5, 0, 35, 25)
>>> mesh. show( “mesh. gi f")

This produces the following GIF image :

When run interactively, we can also use simple commands to zoom in and move the image
around. For example :

>>> mesh = Pl ot Mesh(“mesh”, 5, 0, 35, 25)

>>> nesh. zoomn( 200) # Enl arge by 200%

>>> mesh. | eft (50) # Move image half a screen to left
>>> mesh. show()

>>>

While a Python-only implementation would be unsuitable for huge datasets, performance criti-
cal operations could be moved to C and used in conjunction with our Image base class.

From C to SWIG to Python

This example illustrates a number of things that are possible with SWIG and Python. First, it is
usually relatively easy to build a Python interface to an existing C library.  With a little extra
work, it is possible to improve the interface by adding a few support functions such as our Point
extensions. Finally, once in Python, it is possible to encapsulate C libraries in new kinds of
Python objects and classes. We built a simple Image base class and used it to plot mathematical
functions and unstructured 2D mesh data---two entirely different tasks, yet easily accomplished
with a small amount of Python code. If we later decided to use a different C library such as
OpenGL, we could wrap it in SWIG, change the Image base class appropriately , and use the
function and mesh plotting examples without modification. | think this is pretty cool.
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Putting it all together

Finally, let’s combine our heat equation solver and graphics module into a single application. To
do this, we first need to know how to combine two different SWIG generated modules. When
different SWIG modules need to be combined, there are a number of things you can do.

Merging modules
Two SWIG modules can be combined into a single module if you make an interface file like this :

%rodul e package
% ncl ude pde. i
% ncl ude gd. i

This will combine everything in both interface files into a single super-module called “package”.
The advantage to this approach is that it is extremely quick and easy. The disadvantage is that
the module names of “pde” and “gd” will be lost. If you had a bunch of scripts that relied on
those names, they would no longer work.  Thus, combining modules in this way is probably
only a good idea if the modules are closely related.

Using dynamic loading

If your system supports dynamic loading, you can build each SWIG module into a separate
dynamically loadable module and load each one individually into Python. This is the preferred
approach if it is supported on your system. SWIG wrapper files declare virtually everything as
“static” so using dynamic loading with multiple SWIG generated modules will not usually cause
any namespace clashes.

Use static linking

As an alternative to dynamic loading, you can use a special form of the %rodul e directive as fol-
lows :

%rodul e package, pdec, gdc
% ncl ude enbed. i

This will build a static version of Python with 3 C extension modules added (package, pdec,
and gdc). When using this technique, the names of the modules refer to the low-level SWIG
generated C/C++ modules. Since shadow classes are being used, these modules must have an
extra ‘c’ appended to the name (thus, “pdec” and “gdc” instead of “pde” and “gd”). The extra
modules specified with the %dul es directive do not necessarily have to be SWIG-generated
modules. In practice, almost any kind of Python module can be listed here. It should also be
noted that extra modules names are completely ignored if the enbed. i library file is not used.

Building large multi-module systems

By default, SWIG includes the C code for the SWIG type-checker and variable linking into every
module. However, when, building systems involving large numbers of SWIG modules, com-
mon code such as the SWIG pointer type-checker and variable linking extensions can be shared
if you run SWIG with the - ¢ option. For example :

% swi g -c -python graphics.i
% swi g -c -python network.
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% swig -c -python anal ysis.i

%swig -c -python math.i

%gcc -c graphics_wap.c network_w ap.c analysis wap.c nmath wap.c
%1 d -shared graphics_wap.o -Iswgpy -o graphi csmodul e. so

%1 d -shared network_wap.o -1sw gpy -0 networknodul e. so

%1 d -shared anal ysis_wap.o -I1sw gpy -0 anal ysi smodul e. so

%1d -shared math_wap.o -o -1sw gpy nymat hnodul e. so

SWi gpy is a special purpose library that contains the SWIG pointer type checker and other sup-
port code (see the M sc subdirectory of the SWIG distribution). When used in this manner, the
same support code will be used for all of the modules. The swi gpy library can also be applied
when static linking is being used. See the Advanced Topics chapter for more information about
using SWIG with multiple modules.

A complete application

The following Python script shows an application that combines our C++ heat equation solver,
our gd library, and our Image base class that we developed.

# Sol ve the heat equati on.
# Make a series of data files
# Make a novie of G F images

frompde inport *
frominage inport *
inport string

# | mage cl ass
cl ass Heat | ng( | mage):
def __init__ (self,h,w dth=300, hei ght =300) :
Image. _init__ (self,wdth, height,0.0,0.0,1.0,1.0)

self.h = h
# Create a greyscal e col or map
cmap =[]
for i in range(0, 255):
cnap. append((i,i,i))

sel f. col or map(cnap)
self.cmn =0.0
self.cmax = 1.0
self.imgno = 1

def draw(self):
sel f.clear(0)

dx = 1.0/ (self.h.grid.xpoints-2)
dy = 1.0/ (self.h.grid.ypoints-2)
] =
x =0.0
while i < self.h.grid.xpoints:
=1
y =0.
while j < self.h.grid.ypoints:
c =int((self.h.grid[i][j]-self.cmn)/(self.cnax-
sel f. cm n)*255)
sel f. sol i dbox(x, y+dy, x+dx, y, ¢)
j=i+1
y =y +dy
i =i +1
X = X + dx
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sel f.name = "inage"+string. zfill (self.imno, 4)+".gif"
sel f.imgno = sel f.ingno+l

# Set up an initial condition
def initcond(h):
h. set _tenp(0. 0)
nx = h.grid.xpoints
for i in range(0, nx):
h.grid[i][0] = 1.0

# Set up a problemand run it
h = Heat 2d(50, 50)

# Make an i mage obj ect
ing = Heatl ng(h)

i ni tcond( h)
fileno = 1

# Run it
for i in range(0,25):
h. sol ve(100)
h. dunp(" Dat " +str (fil eno))

i my. show()
print "time =", h.time
fileno = fileno+l

# Cal cul ate average tenperature and exit
sum= 0.0
for i in range(0,h.grid.xpoints):
for j in range(0, h.grid.ypoints):
sum= sum+ h.grid[i][j]
avg = suni (h. grid. xpoi nts*h. gri d. ypoi nts)
print "Avg tenperature =", avg

When run, we now get a collection of datafiles and series of images like this :

Thus, we have a simple physics application that only takes about 1 page of Python code, runs a
simulation, creates data files, and a movie of images. We can easily change any aspect of the sim-
ulation, interactively query variables and examine data. New procedures can be written and
tested in Python and later implemented in C++ if needed. More importantly, we have an appli-
cation that is actually fun to use and modify (well, at least | think so).

Exception handling

The SWIG %except directive can be used to create a user-definable exception handler in charge
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of converting exceptions in your C/C++ program into Python exceptions. The chapter on excep-
tion handling contains more details, but suppose you have a C++ class like the following :

cl ass RangeError {}; /1 Used for an exception

cl ass Doubl eArray {
private:
int n;
doubl e *ptr;
publ i c:
/] Oreate a new array of fixed size
Doubl eArray(int size) {
ptr = new doubl e[ si ze] ;
n = size;
}
/] Destroy an array
~Doubl eArray() {
del ete ptr;
}
/1 Return the length of the array
i nt length() {
return n;

}

/1 Get an itemfromthe array and perform bounds checki ng.
doubl e getiten(int i) {
if ((i >=0) & (i <n))
return ptr[i];
el se
throw RangeError();

}
/] Set an itemin the array and perform bounds checki ng.
void setitenm(int i, double val) {
if ((i >>0) & (i < n))
ptr[i] = val;
el se {
throw RangeError();
}
}

}

The functions associated with this class can throw a range exception for an out-of-bounds array
access. We can catch this in our Python extension by specifying the following in an interface file

%except (pyt hon) {
try {
$f unction
}
catch (RangeError) {
PyErr_Set Stri ng(PyExc_l ndexError, "i ndex out - of - bounds");
return NULL;
}
}

When the C++ class throws a RangeError exception, our wrapper functions will catch it, turn it
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into a Python exception, and allow a graceful death as opposed to just having some sort of mys-
terious program crash.  Since SWIG’s exception handling is user-definable, we are not limited
to C++ exception handling. Please see the chapter on exception handling for more details and
using the excepti on. i library for writing language-independent exception handlers.

Python exceptions can be raised using the PyErr _Set St ri ng() function as shown above. The
following table provides a list of the different Python exceptions available.

Built-in Python Exceptions

PyExc_Attri but eError

Raised when an attribute reference or assignment
fails. Usually raised when an invalid class attribute
is accessed.

PyExc_ECFErr or

Indicates the end-of-file condition for I/0 opera-
tions.

PyExc_1 CError

Raised when an 170 occurs, e.g, ‘file not found’,
‘permission denied’, etc...

PyExc_I nport Error

Raised when an ‘import’ statement fails.

PyExc_I| ndexErr or

Indicates a subscript out of range--usually for array
and list indexing.

PyExc_KeyErr or

Raised when a dictionary key is not found in the set
of existing keys. Could be used for hash tables and
similar objects.

PyExc_Keyboar dl nt err upt

Raised when the user hits the interrupt key.

PyExc_Menor yErr or

Indicates a recoverable out of memory error.

PyExc_NameEr r or

Raised to indicate a name not found.

PyExc_Overfl owErr or

Raised when results of arithmetic computation is
too large to be represented.

PyExc_Runti nmeError

A generic exception for “everything else”. Errors
that don’t fit into other categories.

PyExc_Synt axErr or

Normally raised when the Python parser encoun-
ters a syntax error.

PyExc_Syst enkrror

Used to indicate various system errors.

PyExc_Syst enExi t

A serious error, abandon all hope now.

PyExc_TypeError

Raised when an object is of invalid type.

PyExc_Val ueError

Raised when an object has the right type, but an
inappropriate value.

PyExc_Zer oDi vi si onError

Division by zero error.
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Remapping C datatypes with typemaps

This section describes how SWIG’s treatment of various C/C++ datatypes can be remapped
using the SWIG % ypemap directive. While not required, this section assumes some familiarity
with Python’s C API. The reader is advised to consult the Python reference manual or one of
the books on Python. A glance at the chapter on SWIG typemaps will also be useful.

What is a typemap?

A typemap is mechanism by which SWIG’s processing of a particular C datatype can be overrid-
den. Asimple typemap might look like this :

%rodul e exanpl e

% ypenmap(python,in) int {
$target = (int) PyLong_AsLong($source);
printf(“Received an integer : %\ n", $target);
}

extern int fact(int n);

Typemaps require a language name, method name, datatype, and conversion code. For Python,
“python” should be used as the language name. The “in” method in this example refers to an
input argument of a function. The datatype ‘int’ tells SWIG that we are remapping integers. The
supplied code is used to convert from a PyCbj ect * to the corresponding C datatype. Within
the supporting C code, the variable $sour ce contains the source data (the PyQbj ect in this
case) and $t ar get contains the destination of a conversion.

When this example is compiled into a Python module, it will operate as follows :

>>> from exanpl e i nport *
>>> fact (6)

Received an integer : 6
720

A full discussion of typemaps can be found in the main SWIG users reference. We will primarily
be concerned with Python typemaps here.

Python typemaps
The following typemap methods are available to Python modules :

% ypemap( pyt hon, i n) Converts Python objects to input function arguments
% ypemap( pyt hon, out) Converts return value of a C function to a Python object
% ypemap( pyt hon, vari n) Assigns a global variable from a Python object

% ypemap( pyt hon, var out) Returns a global variable as a Python object

% ypemap( pyt hon, f reear g) Cleans up a function argument (if necessary)

% ypemap( pyt hon, ar gout) Output argument processing

% ypemap( pyt hon, ret) Cleanup of function return values

% ypemap( pyt hon, const) Creation of Python constants

% ypemap( menberi n) Setting of C++ member data

% ypemap( menber out ) Return of C++ member data

% ypemap( pyt hon, check) Checks function input values.
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Typemap variables
The following variables may be used within the C code used in a typemap:

$source Source value of a conversion

$t ar get Target of conversion (where the result should be stored)
$t ype C datatype being remapped

$mangl e Mangled version of data (used for pointer type-checking)
$val ue Value of a constant (const typemap only)

Name based type conversion

Typemaps are based both on the datatype and an optional name attached to a datatype. For
example :

%odul e foo

// This typemap will be applied to all char ** function argunents
% ypemap(pyt hon,in) char ** { ... }

// This typemap is applied only to char ** arguments naned ‘argv’
% ypemap(pyt hon,in) char **argv { ... }

In this example, two typemaps are applied to the char ** datatype. However, the second
typemap will only be applied to arguments named ‘ar gv’. A named typemap will always over-
ride an unnamed typemap.

Due to the name-based nature of typemaps, it is important to note that typemaps are indepen-
dent of typedef declarations. For example :

% ypemap( pyt hon, in) double {
. get a double ...

voi d foo(doubl e); /1 Uses the above typemap
t ypedef doubl e Real ;
voi d bar(Real ); // Does not use the above typemap (double != Real)

To get around this problem, the %appl y directive can be used as follows :

% ypenap( pyt hon, in) doubl e {
. get a double ...

}

voi d foo(doubl e);

t ypedef doubl e Real; I/ Uses typenap

%pply double { Real }; I/ Applies all “double” typenaps to Real.
voi d bar(Real ); /1 Now uses the sare typenap.

Converting Python list to a char **

A common problem in many C programs is the processing of command line arguments, which
are usually passed in an array of NULL terminated strings. The following SWIG interface file
allows a Python list object to be used as a char ** object.

%rodul e argv
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/1 This tells SWGto treat char ** as a special case
% ypenap(pyt hon,in) char ** {
/[* Check if is alist */
i f (PyList_Check($source)) {
int size = PyList_Size($source);

int i =0;
$target = (char **) malloc((size+l)*sizeof (char *));
for (i =0; i <size, i++) {

Pyoj ect *o = PyList_Getlten($source,i);
if (PyString_Check(o))
$target[i] = PyString_AsString(PyList_Cetlten{$source,i));
el se {
PyErr_Set String(PyExc_TypeError,"list nust contain strings");
free($target);
return NULL,;
}
}
$target[i] = 0;
} else {
PyErr_Set String(PyExc_TypeError,"not a list");
return NULL;
}
}

// This cleans up the char ** array we nmalloc’d before the function call
% ypenmap( pyt hon, freearg) char ** {
free((char *) $source);

}

// This allows a Cfunction to return a char ** as a Python |i st
% ypemap( pyt hon, out) char ** {

int len,i;

len = 0;

while ($source[len]) |en++

$target = PyList_New(len);

for (i =0; i <len; i++) {

PyLi st_Setlten($target,i,PyString_FronsString($source[i]));

}

}

// Now a few test functions
%nline %
int print_args(char **argv) {
int i =0;
while (argv[i]) {
printf("argv[%] = %\n", i,argv[i]);
i ++;
}

return i;

}

/] Returns a char ** |ist

char **get_args() {
static char *val ues[]
return &al ues[0];

{ "Dave", "Mke", "Susan", "John", "Mchelle",

%
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When this module is compiled, our wrapped C functions now operate as follows :

>>> fromargv inmport *
>>> print_args([“Dave”,”Mke”,”Mary”, "Jane”, "John"])

argv[0] = Dave
argv[1] = Mke
argv[2] = Mary
argv[ 3] = Jane
argv[4] = John
5

>>> get _args()
[*Dave’, ‘Mke, ‘Susan’, ‘John’, ‘Mchelle’]
>>>

Our type-mapping makes the Python interface to these functions more natural and easy to use.

Converting a Python file object to a FILE *

In our previous example involving gd-1.2, we had to write wrappers around f open() and
f cl ose() so that we could provide gd with a FI LE * pointer. However, we could have used a
typemap like this instead :

/1 Type mapping for grabbing a FILE * from Pyt hon

% ypemap( pyt hon,in) FILE * {
if (!PyFile_Check($source)) {
PyErr_Set String(PyExc_TypeError, "Need a filel");
return NULL;
}
$target = PyFile_AsFil e($source);
}

Now, we can rewrite one of our earlier examples like this :

# Sinple gd program
fromgd inport *

i m= gdl nageQ eat e( 64, 64)

bl ack = gdl mageCol or Al | ocat e(i m 0, 0, 0)

white = gdl nageCol or Al | ocat e(i m 255, 255, 255)
gdl mageLi ne(i m 0, 0, 63, 63, white)

f = open(“test.gif”,”w) # Create a Python file object
gdl mageG f (imf) # Pass to a C function as FILE *
f.close()

gdl mageDest roy(i m

Using typemaps to return arguments

A common problem in some C programs is that values may be returned in arguments rather
than in the return value of a function. For example :

/* Returns a status value and two values in outl and out2 */
int span{(double a, double b, double *outl, double *out2) {
Do a bunch of stuff ...
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*outl = resultl;
*out2 = result2;
return status;

b
A named typemap can be used to handle this case as follows :

%vodul e outarg

// This tells SWGto treat an double * argunent with nane 'QutVal ue' as
// an output value. W'Il| append the value to the current result which
// is guaranteed to be a List object by SWG

% ypenap( pyt hon, argout) doubl e *Qut Val ue {
Pyoj ect *o;
o = PyFl oat _FronDoubl e(*$sour ce) ;
if (('$target) || ($target == Py None)) {
$target = o;
} else {
if (!PyList_Check($target)) {
PyQoj ect *02 = $target;
$target = PyList_New(0);
PyLi st _Append( $t ar get, 02) ;
Py_XDECREF(02) ;
}
PyLi st _Append( $t ar get, 0) ;
Py_XDECREF( 0) ;
}
}
int span{double a, double b, double *QutVal ue, double *QutVal ue);

With this typemap, we first check to see if any result exists. If so, we turn it into a list and
append our new output value to it. If this is the only result, we simply return it normally. For
our sample function, there are three output values so the function will return a list of 3 elements.
As written, our function needs to take 4 arguments, the last two being pointers to doubles. We
may not want to pass anything into these arguments if they are only used to hold output values
so we could change this as follows :

% ypenmap( pyt hon, i gnore) doubl e *Qut Val ue(doubl e tenp) {
$target = & enp; /* Assign the pointer to a local variable */
}

Now, in a Python script, we could do this :

>>> a = span(4,5)

>>> print a

[0, 2.45, 5.0]

>>>
Mapping Python tuples into small arrays
In some applications, it is sometimes desirable to pass small arrays of numbers as arguments. For
example :

extern void set_direction(double a[4]); // Set direction vector

Version 1.1, June 23, 1997



SWIG Users Guide SWIG and Python 198

This too, can be handled used typemaps as follows :

// Gab a 4 elenent array as a Python 4-tuple
% ypemap( pyt hon, i n) doubl e[ 4] (doubl e tenmp[4]) { /1l tenp[4] becones a |ocal variable
int i;
i f (PyTupl e_Check($source)) {
if (!PyArg_ParseTupl e($source, ”dddd”, t enp, t enp+1, t enp+2, t enp+3)) {
PyErr_Set String(PyExc_TypeError, "tupl e nust have 4 el enents");
return NULL;

}
$target = & enp[0];
} else {
PyErr_Set String(PyExc_TypeError, "expected a tuple.");
return NULL,;

}
}

This allows our set _di r ect i on function to be called from Python as follows :
>>> set _direction((0.5,0.0,1.0,-0.25))

Since our mapping copies the contents of a Python tuple into a C array, such an approach would
not be recommended for huge arrays, but for small structures, this kind of scheme works fine.

Accessing array structure members
Consider the following data structure :

#defi ne NAMELEN 32
typedef struct {
char nane[ NAMELEN ;

} Person;

By default, SWIG doesn’t know how to the handle the name structure since it’s an array, not a
pointer. In this case, SWIG will make the array member readonly. However, member typemaps
can be used to make this member writable from Python as follows :

% ypenmap( nenberin) char[ NAMELEN {
/* Copy at nost NAMELEN characters into $target */
strncpy($t arget, $sour ce, NAMELEN) ;

}

Whenever a char [ NAMELEN] type is encountered in a structure or class, this typemap provides
a safe mechanism for setting its value. An alternative implementation might choose to print an
error message if the name was too long to fit into the field.

It should be noted that the [ NAMELEN] array size is attached to the typemap. A datatype involv-
ing some other kind of array would not be affected. However, you can write a typemap to
match any sized array using the ANY keyword as follows :

% ypemap( nenberin) char [ANY] {
strncpy($t arget, $sour ce, $di n0) ;
}
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During code generation, $di 0 will be filled in with the real array dimension.

Useful Functions

When writing typemaps, it is often necessary to work directly with Python objects instead of
using the conventional PyArg Par seTupl e() function that is usually used when writing
Python extensions. However, there are a number of useful Python functions available for you to

use.
Python Integer Conversion Functions

Pyoj ect *Pylnt_FronlLong(long |) Convert long to Python integer

I ong Pyl nt_AsLong(PyQbj ect *) Convert Python integer to long
int Pylnt_ Check(PyQhject *) Check if Python object is an integer

Python Floating Point Conversion Functions

PyQbj ect *PyFl oat _FronDoubl e( doubl e) Convert a double to a Python float
doubl e PyFl oat _AsDoubl e( Pyhj ect *) Convert Python float to a double

i nt PyFl oat Check(PyQbj ect *) Check if Python object is a float

Python String Conversion Functions

PyQoj ect *PyString Fronttring(char *)

Convert NULL terminated ASCII
string to a Python string

PyObj ect *PyString_FronttringAndSi ze(char *,
int |en)

Convert a string and length into a
Python string. May contain NULL
bytes.

int PyString_Size(PyObject *)

Return length of a Python string

char *PyString_AsString(PyQbject *)

Return Python string as a NULL ter-
minated ASCII string.

int PyString_Check(PyQhject *)

Check if Python object is a string

Python List Conversion Functions

PyObj ect *PyList _New(int size)

Create a new list object

int PyList_Size(PyObject *list)

Get size of a list

PyQhj ect *PyList_Getlten(PyCbject *list,

Get item i from list

int i)
int PyList _Setltem{PyChject *list, int i, Set list[i] to item.
PyCbhj ect *iten
int PyList _Insert(PyQbject *list, int i, Inserts item at list[i].
PyQbj ect *item
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Python List Conversion Functions

int PyList_Append(PyQbject *list,
PyQbj ect *item

Appends item to list

PyQhj ect *PyList_GetSlice(PyObject *Ilist,
int i, int j)

Returns list[i:j]

int PyList _SetSlice(PyOhject *list, int i,
int j, PyCbject *list2)

Sets list[i:j] = list2

int PyList_Sort(PyCbject *list)

Sorts a list

int PyList_Reverse(PyQhject *list)

Reverses a list

PyObj ect *PyLi st _AsTupl e(Pyhject *Ilist)

Converts a list to a tuple

int PyList_Check(PyQbject *)

Checks if an object is a list

Python Tuple Functions

PyQbj ect *PyTupl e_New(int size)

Create a new tuple

int PyTuple_Size(Pyhject *t)

Get size of a tuple

PyQhj ect *PyTuple_Cetltem(PyObject *t,int i)

Get object t[i]

int PyTuple_Setltem(PyCbject *t, int i,
PyCbj ect *itemn

Set t[i] = item

PyObj ect *PyTuple_GetSlice(PyOhject *t,int i
int j)

Get slice t[i:j]

int PyTupl e_Check(PyQbj ect *)

Check if an object is a tuple

Python File Conversions

PyCObj ect *PyFile_FronFil e(FILE *f)

Convert a FILE * to a Python file
object

FILE *PyFil e_AsFi | e( PyObj ect *)

Return FILE * from a Python object

int PyFile_Check(PyQhject *)

Check if an object is a file

Standard typemaps

The following typemaps show how to convert a few common kinds of objects between Python

and C (and to give a better idea of how typemaps work)

Version 1.1, June 23, 1997



SWIG Users Guide SWIG and Python 201

Function argument typemaps

i nt, % ypemap( pyt hon,in) int,short,long {
short, if (!Pylnt_Check($source)) {
| ong PyErr _Set String(PyExc_TypeError, "not an integer”);
return NULL;
}
$target = ($type) Pylnt_AsLong(S$source);
}
fl oat, % ypemap( pyt hon,in) float, double {
doubl e i f (!PyFl oat_Check($source)) {
PyErr_Set String(PyExc_TypeError,”not a float”);
return NULL;
}
$target = ($type) PyFl oat _AsDoubl e($source);
}
char * % ypemap( pyt hon,in) char * {
if (!PyString_Check($source)) {
PyErr_Set String(PyExc_TypeError,”not a string”);
return NULL;
}
$target = PyString_AsString($source);
}
FI LE * % ypemap( python,in) FILE * {
if (!PyFile_Check($source)) {
PyErr_Set String(PyExc_TypeError,”not a file”);
return NULL;
}
$target = PyFile AsFil e($source);
}
Function return typemaps
i nt, % ypemap( pyt hon, out) int,short {
short $target = PyBuild_Value(“i”, ($type) $source);
}
| ong % ypemap( pyt hon, out) long {
$target = PyBuild Value(“l”, $source);
}
fl oat, % ypemap( pyt hon, out) fl oat, double {
doubl e $target = PyBuild_Value(“d”, ($type) $source);
}
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Function return typemaps

char * % ypemap( pyt hon, out) char * {
$target = PyBuild Val ue(“s”, $source);
}
FILE * % ypemap(python, out) FILE * {
$target = PyFile_ FronFil e($source);
}

Pointer handling

SWIG pointers are mapped into Python strings containing the hexadecimal value and type. The
following functions can be used to create and read pointer values .

SWIG Pointer Conversion Functions

void SWG MakePtr(char *str, void *ptr, Makes a pointer string and saves it
char *type) in st r, which must be large enough
to hold the result. ptr contains the
pointer value and t ype is the string
representation of the type.

char *SWG CGetPtr(char *str, void **ptr, Attempts to read a pointer from the

char *type) string st r. pt r is the address of the
pointer to be created and t ype is the
expected type. Ift ype is NULL,
then any pointer value will be
accepted. On success, this function
returns NULL. On failure, it returns
the pointer to the invalid portion of
the pointer string.

These functions can be used in typemaps. For example, the following typemap makes an argu-
ment of “char *buf f er ” accept a pointer instead of a NULL-terminated ASCII string.

% ypenap(pyt hon,in) char *buffer {

Pyoj ect *o;

char *str;

if (!PyString_Check(o)) {
PyErr_Set String(PyExc_TypeError,”not a string”);
return NULL;

}

str = PyString_AsString(o);

if (SWGGetPtr(str, (void **) &ptarget, “$mangle”)) {
PyErr_Set String(PyExc_TypeError,”not a pointer”);
return NULL;

}

Note that the $mangl e variable generates the type string associated with the datatype used in
the typemap.
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By now you hopefully have the idea that typemaps are a powerful mechanism for building more
specialized applications. While writing typemaps can be technical, many have already been
written for you. See the Typemaps chapter for more information about using library files.

Implementing C callback functions in Python

Now that you're an expert, we will implement simple C callback functions in Python and use
them in a C++ code.

Let’s say that we wanted to write a simple C++ 2D plotting widget layered on top of the gd-1.2
library. A class definition might look like this :

R e LT LT T

// Oeate a G-+ plotting "widget" using the gd-1.2 library by Thonas Boutel |
/1

// This exanple primarily illustrates how cal | back functions can be

/1 inplemented in Python.

#i ncl ude <stdio. h>
extern "C' {
#i ncl ude "gd. h"

}

t ypedef doubl e (*PLOTFUNC) (doubl e, void *);

class Pl ot Wdget {

private:
doubl e Xm n, ym n, Xxmax, ymax; [/l Plotting range
PLOTFUNC cal | back; /1 Callback function
voi d *clientdat a; // dient data for callback
int npoi nt s; /1 Nunber of points to plot
int wi dt h; /1 1nmage width
int hei ght ; /1 1 mage hei ght
int bl ack, whi t e; /1 Sonme col ors
gdl nagePtr im /1 1 mage pointer
voi d transf orm(doubl e, doubl e, int&int&);
publi c:

Pl ot Wdget (int w, int h,doubl e, doubl e, doubl e, doubl e) ;
~Pl ot Wdget () ;

voi d set_net hod( PLOTFUNC func, void *clientdata); /1 Set call back nethod
voi d set_range(doubl e, doubl e, doubl e, doubl €); /1 Set plot range

voi d set_points(int np) {npoints = np;} /1 Set nunber of points
void plot(); /1 Make a pl ot

voi d save(FlLE *f); /1l Save a plot to disk

}

The widget class hides all of the underlying implementation details so this could have just as
easily been implemented on top of OpenGL, X11 or some other kind of library. When used in
C++, the widget works like this :

// Sinple main programto test out our w dget
#i ncl ude <stdio. h>

#i ncl ude "wi dget. h"

#i ncl ude <mat h. h>
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/1 Callback function
doubl e ny_func(double a, void *clientdata) {
return sin(a);

}

int main(int argc, char **argv) {
Pl ot Wdget *w,
FILE *f;

w = new Pl ot Wdget (500, 500, -6.3,-1.5,6.3,1.5);
w >set _met hod( ny_func, 0); /1 Set callback function
w>pl ot (); /1 Nake pl ot
f = fopen("plot.gif","w);
w>save(f);
fclose(f);
printf("wote plot.gif\n");
}

Now suppose that we wanted to use our widget interactively from Python. While possible, it is
going to be difficult because we would really like to implement the callback function in Python,
not C++. We also don’t want to go in and hack or C++ code to support this. Fortunately, you
can do it with SWIG using the following interface file :

I/ SWGinterface to our Pl ot Wdget
%rodul e pl ot wi dget

%

#i ncl ude "wi dget . h"

%

// Grab a Python function object as a Python object.
% ypemap( pyt hon, i n) PyChject *pyfunc {
if (!PyCallable_Check($source)) {
PyErr_Set String(PyExc_TypeError, "Need a callable object!");
return NULL;
}

$target = $source;

}

/1 Type mapping for grabbing a FILE * from Python
% ypemap( pyt hon,in) FILE * {
if (!PyFile_Check($source)) {
PyErr_Set String(PyExc_TypeError, "Need a filel");
return NULL;
}
$target = PyFil e AsFil e($source);
}

// Gab the class definition
% ncl ude wi dget . h

%

/* This function nmatches the prototype of the nornal C cal | back
function for our w dget. However, we use the clientdata pointer
for holding a reference to a Python call abl e object. */

static doubl e PythonCal | Back(doubl e a, void *clientdata)
{
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PyQoj ect *func, *arglist;
Pyhj ect *result;
doubl e dres = 0;

func = (PyQhject *) clientdata; /1 Get Python function

arglist = Py _BuildVal ue("(d)",a); /1l Build argurent |ist

result = PyEval _Cal | (bj ect(func,arglist); /1 Call Python

Py DECREF(arglist); /1l Trash arglist

if (result) { /1 1f no errors, return doubl e
dres = PyFl oat _AsDoubl e(resul t);

}

Py XDECREF(result);
return dres;

}

%

/1 Attach a new nethod to our plot wdget for adding Python functions
%ddnet hods Pl ot Wdget {
/1 Set a Python function object as a call back function
/1 Note : Py(hject *pyfunc is remapped with a typenpap
voi d set_pynet hod( PyChj ect *pyfunc) {
sel f - >set _mret hod( Pyt honCal | Back, (void *) pyfunc);
Py_1 NCREF( pyf unc) ;
}
}

While this is certainly not a trivial SWIG interface file, the results are quite cool. Let’s try out our
new Python module :

# Now use our plotting widget in variety of ways

from pl ot wi dget inport *
fromnath inport *

# Make a plot using a normal Python function as a cal |l back
def funcl(x):
return 0.5*si n(x)+0. 25*si n( 2*x) +0. 125* cos( 4*x)

print "Making plotl.gif..."

# Make a widget and set call back

w = Pl ot Wdget (500, 500, - 10, - 2, 10, 2)

w. set _pymet hod( f uncl) # Regi ster our Python function
w. plot ()

f = open("plotl.gif","w)

w. save(f)

f.close()

# Make a pl ot using an anonynous function

print "Making plot2.gif..."
wl = Pl ot Wdget (500, 500, -4, -1, 4, 16)

wl. set _pynet hod(| anbda x: x*x) # Register x"2 as a call back
wl. pl ot ()

f = open("plot2.gif","w)

wl. save(f)

f.close()

# Make another plot using a built-in function
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print "Making plot3.gif..."

w2 = Pl ot Wdget (500, 500, -7,-1.5,7, 1. 5)

W2. set _pynet hod(si n) # Register sin(x) as a call back
w2. pl ot ()

f = open("plot3.gif","w)

wW2. save(f)

f.close()

The “plot” method for each widget is written entirely in C++ and assumes that it is calling a call-
back function written in C/C++. Little does it know that we have actually implemented this
function in Python. With a little more work, we can even write a simple function plotting tool :

# Plot a function and spawn xv

i nport posi x

i nport sys

inport string
from pl ot wi dget inport *
fromnmath inport *

line = rawinput("Enter a function of x : ")
ranges = string.split(raw_input("Enter xmn,ynn, xmax,ynmax :"),",")

print "Making a plot..."
w = Pl ot Wdget (500, 500, string. at of (ranges[0] ), stri ng. at of (ranges[1]),
string. atof (ranges[2]), string. at of (ranges[3]))

# Turn user input into a Python function
code = "def func(x): return " + line
exec( code)

w. set _pymret hod(func)

w. pl ot ()

f = open("plot.gif","w)

w. save(f)

f.close()

posi x. systen("xv plot.gif &')

Other odds and ends

Adding native Python functions to a SWIG module

Sometimes it is desirable to add a native Python method to a SWIG wrapper file. Suppose you
have the following Python/C function :

PyChj ect *spam system(PyChj ect *sel f, PyChject *args) {
char *command;
int sts;
if (!'PyArg_ParseTupl e(args,”s”, &omand))
return NULL;
sts = systen(comrand);
return Py_Buil dVal ue(“i”, sts);
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}

This function can be added to a SWIG module using the following declaration :

Y%at i ve(systen) spamsystem /] Oreate a coomand cal |l ed ‘ syst em

Alternatively, you can use the full function declaration like this
Y%at i ve(systen) Py(hject *spamsysten(PyChject *self, Py(hject *args);
or

Y%at i ve(systen) extern PyChj ect *spam systen(PyChj ect *self, PyChject *args);

The gory details of shadow classes

This section describes the process by which SWIG creates shadow classes and some of the more
subtle aspects of using them.

A simple shadow class
Consider the following declaration from our previous example :
%rodul e pde

struct Gidad {
@id2d(int ni, int nj);

~@id2d();

doubl e **dat a;
int Xpoi nt s;
int ypoi nt s;

b
The SWIG generated class for this structure looks like the following :

# This file was created autonatically by SWG
i nport pdec
class Gid2dptr :
def __init_ (self,this):
self.this = this
self.thisown = 0
def _ del _ (self):
if self.thisown == 1 :
pdec. del ete_Qid2d(sel f.this)
def __setattr__ (self, name, val ue):
if name == "data" :
pdec. @i d2d_dat a_set (sel f. t hi s, val ue)
return
if name == "xpoints" :
pdec. @i d2d_xpoi nts_set (sel f.this, val ue)
return
if name == "ypoints" :
pdec. @i d2d_ypoi nts_set (sel f.thi s, val ue)
return
self.__dict__[nane] = value
def __getattr__ (self, nane):
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if name == "data" :

return pdec. @id2d_data_get (sel f.this)
if name == "xpoints" :

return pdec. @i d2d_xpoi nts_get(sel f.this)
if name == "ypoints" :

return pdec. @i d2d_ypoi nts_get (sel f.this)

return self.__dict__ [ nane]

def __repr_ (self):
return "<C @id2d i nstance>"

class Gid2d(Gid2dpPtr):

def __init_ (self,arg0,argl) :
sel f.this = pdec. new &id2d(arg0, argl)
self.thisown =1

Module names

Shadow classes are built using the low-level SWIG generated C interface. This interface is
named “modulec” where “module” is the name of the module specified in a SWIG interface file.
The Python code for the shadow classes is created in a file “module.py”. This is the file that
should be loaded when a user wants to use the module.

Two classes

For each structure or class found in an interface file, SWIG creates two Python classes. If a class
is named “Gri d2d”, one of these classes will be named “Gri d2dPt r ” and the other named
“Grid2d”. The Gri d2dPtr class is used to turn wrap a Python class around an already preex-
isting G i d2d pointer. For example :

>>> gptr = create_grid2d() # Returns a Gid2d from somewhere
>>> g = @Gid2dPtr(gptr) # Turn it into a Python cl ass
>>> . Xpoi nts

50

>>>

The Gri d2d class, on the other hand, is used when you want to create a new G i d2d object from
Python. In reality, it inherits all of the attributes of a G i d2dPt r, except that its constructor calls
the corresponding C++ constructor to create a new object.  Thus, in Python, this would look
something like the following :

>>> g = @i d2d(50, 50) # Oreate a new @id2d
>>> . Xpoi nts
50

>>>

This two class model is a tradeoff. In order to support C/C++ properly, it is necessary to be able
to create Python objects from both pre-existing C++ objects and to create entirely new C++
objects in Python. While this might be accomplished using a single class, it would complicate
the handling of constructors considerably. The two class model, on the other hand, works, is
consistent, and is relatively easy to use. In practice, you probably won’t even be aware that
there are two classes working behind the scenes.

The this pointer
Within each shadow class, the member “t hi s contains the actual C/C++ pointer to the object.
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You can check this out yourself by typing something like this :

>>> g = @i d2d(50, 50)
>>> print g.this
_1008fe8_@id2d_p
>>>

Direct manipulation of the “t hi s” pointer is generally discouraged. In fact forget that you read
this.

Object ownership

Ownership is a critical issue when mixing C++ and Python. For example, suppose I create a new
object in C++, but later use it to create a Python object. If that object is being used elsewhere in
the C++ code, we clearly don’t want Python to delete the C++ object when the Python object is
deleted. Similarly, what if | create a new object in Python, but C++ saves a pointer to it and starts
using it repeatedly. Clearly, we need some notion of who owns what. Since sorting out all of the
possibilities is probably impossible, SWIG shadow classes always have an attribute “t hi sown”
that indicates whether or not Python owns an object. Whenever an object is created in Python,
Python will be given ownership by setting t hi sown to 1. When a Python class is created
from a pre-existing C/C++ pointer, ownership is assumed to belong to the C/C++ code and
t hi sown will be set to 0.

Ownership of an object can be changed as necessary by changing the value of t hi sown. When
set, Python will call the C/C++ destructor when the object is deleted. If it is zero, Python will
never call the C/C++ destructor.

Constructors and Destructors

C++ constructors and destructors will be mapped into Python’s __init ___and _ del __ meth-
ods respectively. Shadow classes always contain these methods even if no constructors or
destructors were available in the SWIG interface file. The Python destructor will only call a C/
C++ destructor if sel f. t hi sown is set.

Member data

Member data of an object is accessed through Python’s _getattr___and __setattr__ meth-
ods.

Printing

SWIG automatically creates a Python __repr __ method for each class. This forces the class to
be relatively well-behaved when printing or being used interactively in the Python interpreter.

Shadow Functions
Suppose you have the following declarations in an interface file :

%rodul e vect or

struct Vector {
Vector();
~Vector();
doubl e Xx,vy, z;
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Vector addv(Vector a, Vector b);

By default, the function addv will operate on Vect or pointers, not Python classes. However,
the SWIG Python module is smart enough to know that Vect or has been wrapped into a
Python class so it will create the following replacement for the addv() function.

def addv(a,b):
result = VectorPtr(vectorc.addv(a.this,b.this))
result.thisown =1
return result

Function arguments are modified to use the “this” pointer of a Python Vector object. The result
is a pointer to the result which has been allocated by malloc or new (this behavior is described in
the chapter on SWIG basics), so we simply create a new VectorPtr with the return value. Since
the result involved an implicit malloc, we set the ownership to 1 indicating that the result is to be
owned by Python and that it should be deleted when the Python object is deleted. As a result,
operations like this are perfectly legal and result in no memory leaks :

>>> v = add(add(add(add(a, b),c),d),e)

Substitution of complex datatypes occurs for all functions and member functions involving
structure or class definitions. It is rarely necessary to use the low-level C interface when working
with shadow classes.

Nested objects

SWIG shadow classes support nesting of complex objects. For example, suppose you had the
following interface file :

%rodul e particle

typedef struct {
Vector();
doubl e x,vy, z;
} Vector;

typedef struct {

Particle();
~Particle();

Vector r;
Vector v;
Vector f;
int type;

} Particle;

In this case you will be able to access members as follows :

>>> p = Particle()
>>> p.r.x = 0.0
>>>p.r.y =-1.5
>>>p.r.z = 2.0

>>> p.v = addv(vl, v2)

>>>
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Nesting of objects is implemented using Python’s __setattr___and __getattr__ functions.
In this case, they would look like this :

class ParticlePtr:

def _ getattr__ (self, name):
if name == “r”:
return particlec. VectorPtr(Particle r_get(self.this))
elif nane == “v":
return particlec. VectorPtr(Particle_v_get(self.this))

def _ setattr_ (self, nane, val ue):
if name == “r":
particlec.Particle_r_set(self.this,value.this)
elif name == “v":
particlec.Particle_v_set(self.this,value.this)

The attributes of any given object are only converted into a Python object when referenced. This
approach is more memory efficient, faster if you have a large collection of objects that aren’t
examined very often, and works with recursive structure definitions such as :

struct Node {
char *nane;
struct Node *next;

}s

Nested structures such as the following are also supported by SWIG. These types of structures
tend to arise frequently in database and information processing applications.

typedef struct {
unsi gned i nt dataType;

uni on {
int intval ;
doubl e doubl eval ;
char *charval ;
voi d *ptrval ue;
I ong | ongval ;
struct {
int i;
doubl e f;
voi d *v;
char nane[ 32] ;
}v
Py

} Val ueStruct;
Access is provided in an entirely natural manner,

>>> v = new Val ueStruct () # Oreate a Val ueStruct sonehow
>>> v. dat aType

1

>>> v. u.intval

45
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>>> v. u. | ongval

45

>>> v.u.v.v = _0 void p
>>>

To support the embedded structure definitions, SWIG has to extract the internal structure defini-
tions and use them to create new Python classes. In this example, the following shadow classes
are created :

# O ass corresponding to union u nenber
class ValueStruct _u :

# dass corresponding to struct v nenber of union u
class Val ueStruct _u_v :

The names of the new classes are formed by appending the member names of each embedded
structure.

Inheritance and shadow classes

Since shadow classes are implemented in Python, you can use any of the automatically gener-
ated classes as a base class for more Python classes. However, you need to be extremely careful
when using multiple inheritance. When multiple inheritance is used, at most ONE SWIG gener-
ated shadow class can be involved. If multiple SWIG generated classes are used in a multiple
inheritance hierarchy, you will get name clashes on the t hi s pointer, the _ getattr__ and
__setattr__ functions won’'t work properly and the whole thing will probably crash and
burn. Perhaps it’s best to think of multiple inheritance as a big hammer that can be used to solve
alot of problems, but it hurts quite alot if you accidently drop it on your foot....

Methods that return new objects

By default SWIG assumes that constructors are the only functions returning new objects to
Python. However, you may have other functions that return new objects as well. For example:

Vector *cross_product (Vector *v1, Vector *v2) {
Vector *result = new Vector();

result = ... conpute cross product ...
return resul t;

}

When the value is returned to Python, we want Python to assume ownership. The brute force
way to do this is to simply change the value of thisown. For example :

>>> v = cross_product (a, b)
>>> v.thisown = 1 # Now Python owns it

Unfortunately, this is ugly and it doesn’t work if we use the result as a temporary value :
w = vect or _add(cross_product (a, b), c) # Results in a nenory | eak

However, you can provide a hint to SWIG when working with such a function as shown :
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// C Function returning a new obj ect
%ew Vector *cross_product (Vector *v1, Vector *v2);

The %mewdirective only provides a hint that the function is returning a new object. The Python
module will assign proper ownership of the object when this is used.

Performance concerns and hints

Shadow classing is primarily intended to be a convenient way of accessing C/C++ objects from
Python. However, if you’re directly manipulating huge arrays of complex objects from Python,
performance may suffer greatly. In these cases, you should consider implementing the functions
in C or thinking of ways to optimize the problem.

There are a number of ways to optimize programs that use shadow classes. Consider the follow-
ing two code fragments involving the Par ti cl e data structure in a previous example :

def forcel(pl, p2):

dx = p2.r.x - pl.r.x

dy = p2.r.y - pl.r.y

dz = p2.r.z - pl.r.z

r2 = dx*dx + dy*dy + dz*dz

f = 1.0/ (r2*math.sqrt(r2))

pl.f.x = pl.f.x + f*dx

p2.f.x = p2.f.x - f*dx

pl.f.y = pl.f.y + f*dy

p2.f.y = p2.f.y - f*dy

pl.f.z = pl.f.z + f*dz

p2.f.z = p2.f.z - f*dz
def force2(pl, p2):

rl =plr

r2 = p2.r

dx =r2.x - rl.x

dy =r2.y - rl.y

dz =r2.z - rl.z

r2 = dx*dx + dy*dy + dz*dz

f =1.0/(r2*math.sqrt(r2))

fl1=pl.f

f2 = p2.f

fl.x =fl.x + f*dx

f2.x = f2.x - f*dx

fl.y =fl.y + f*dy

f2.y =f2.y - f*dy

fl.z =fl.z + f*dz

f2.z =f2.z - f*dz

The first calculation simply works with each Particle structure directly. Unfortunately, it per-
forms alot of dereferencing of objects. If the calculation is restructured to use temporary vari-
ables as shown in force2, it will run significantly faster--in fact, on my machine, the second code
fragment runs more than twice as fast as the first one.

If performance is even more critical you can use the low-level C interface which eliminates all of
the overhead of going through Python’s class mechanism (at the expense of coding simplicity).
When Python shadow classes are used, the low level C interface can still be used by importing
the ‘modulec’ module where ‘module’ is the name of the module you used in the SWIG interface
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